

UTILITY BEST PRACTICES GUIDE LAUNCH

In partnership with

March 17, 2022

Agenda

Welcome & Purpose

1:00 pm ET

Introductions & Context

1:05 pm ET

Utility Best Practices Guide Takeaways

1:10 pm ET

Making a Business Case for CEA Programs

CEA Program Design

Lighting & HVAC Measures

CEA Facility Baselines

Savings Methodologies for CEA Program Offerings

Incentive Structure

Strategic Energy Management

Resource Benchmarking CEA Facilities

CEA Program Market Engagement

About RII

Objective, data-driven non-profit

Founded 2016 in Portland, Oregon

Expertise in climate policy, utility programs, green building certification, sustainable business, construction & indoor cultivation

In 2020, received 3-year grant from USDA to develop KPIs, standards & building rating system for CEA

What We Do / Our Mission

We measure, verify & celebrate the world's most efficient agricultural ideas.

- **Efficiency & Productivity**
- Key Performance Indicators
- Benchmarks
- Baselines

Verify

Best Practices & Standards

- Training
- Policies
- Utility Programs

Leadership Recognition

- Verification
- Case Studies
- Certification

Our Network

EDUCATION and advocacy about best practices for growers

RII Technical Advisory Council

Multi-disciplinary body who aggregates knowledge to support producers and other stakeholders with objective and peer-reviewed data and curriculum on benchmarking resource efficiency

- Guides development of standards
- Shapes tools and resources to support best practices
- Advocates for informed policies, incentives and regulations

HVAC - Lighting - Utility - Water Policy - Data - Controls - Emissions Facility Design & Construction

Today's Speakers

Gretchen Schimelpfenig

Jeannie Sikora CLEAResult®

Evergreen
Consulting Group

RII Utility Working Group 2022 Charter

To advance best practices for controlled environment agriculture efficiency programs to support producers to overcome barriers to efficiency, promote efficiency for producers in compelling ways, and develop baselines for resource productivity and efficiency of CEA facilities to achieve persistent savings, decarbonization and emissions reductions goals and CEA market transformation.

CEA Utility & Efficiency Program Best Practices Guide

Access the Guide in the RII Catalog

Featuring contributions from 17 Utility Working Group member companies

Peer reviewed by 7 CEA key market actor organizations

Funded via USDA CIG grant

- Access it for free on the <u>RII catalog</u>
- Share with your network
- Review the Appendix to learn about efficiency programs across the United States
 - Eligible equipment
 - Incentive structures

Cannabis Utility & Efficiency Program Primer

Published in 2020

Peer-reviewed guidance for specialized energy efficiency programs and incentives for cannabis production facilities

Contributions from Utility Working Group member companies

Funded via RII membership

Access it for free on the <u>RII catalog</u>

PROGRAM DESIGN & MARKET ENGAGEMENT PRIMER

FOR ENERGY EFFICIENCY UTILITIES & PROGRAM IMPLEMENTERS SERVING CANNABIS CULTIVATORS

BY GRETCHEN SCHIMELPFENIG, PE

Purpose of Today's Workshop

Utilities & Efficiency Programs are Key CEA Market Actors

- Identify the range of approaches efficiency program administrators are taking as they engage the market
- Emphasize key areas of consideration for efficiency program design and implementation
- Outline opportunities for research, program design and implementation, and regional/national coordination in four key areas:
 - Resource acquisition
 - **Emerging technologies**
 - Market transformation
 - Utility & efficiency program policy

Energy Suppliers

Efficiency Programs

Making A Business Case for CEA

- US CEA market 2018 trajectory for growth was
 3.4% growth rate 2018-2023
- High efficiency technologies growing even faster ~10%
- More consumer demand for locally and sustainably-grown produce
- Supply chain issues and inflation affect poorest communities the most
- Climate change and pandemic forcing food systems to step up to feed local communities, demonstrate resilience

Emerging Areas of CEA

Energy Sources

Heat pumps - geothermal, gas Agrivoltaics

Emerging Markets

Indoor vertical farms

Mushrooms

Houseplants

Community Shared Agriculture (CSA)

Emerging Technologies

LED grow lights

Automation/IoT/controls

Heating systems & heat recovery

Building envelope

Irrigation & nutrients

Diverse Facility Types & Complex Activities

CEA market actors are seeking	Utilities and programs are impacted by	
Incentives and on-bill financing for energy efficiency	 Load reduction Carbon emissions mitigation Grid resilience Electrification opportunities 	
Interconnections and electric service upgrades	Load growth	
Integration of renewable energy infrastructure	Load shiftingGrid resilience	
Accessing trade allies	Quality and availability of supply chain	
Assistance with understanding or paying their bill	 Energy efficiency opportunities Demand management opportunities 	

Challenges for CEA Producers Impacting Utilities and Efficiency Programs

Diverse Crop Types* Grown in CEA Facilities

^{*}This guide covers non-cannabis crop types. Cannabis is also grown in CEA facilities. Best practices for cannabis energy efficiency programs is available on the RII catalog.

Many CEA Building Types

Residential Home Growers

Fruits, Flowers, Herbs, Veggies, Cannabis

Hoop house/ High Tunnels

Fruits, Flowers, Herbs, Veggies, Cannabis

Gable-style Greenhouses

Fruits, Houseplants Flowers, Herbs, Veggies, Cannabis

Indoor Grow Rooms

Herbs, Mushrooms, Cannabis

Drying/Cold Storage

Fruits, Herbs, Veggies, Cannabis

Processing Laboratories

Flowers, Herbs, Cannabis

SECTION 04 CEAPROGRAM DESIGN

Learn CEA Facility Characteristics

Cultivating Canopies in CEA Facilities

Indoor facilities use electricity for cultivation processes like lighting and HVAC and have opportunities for efficiency across a wide range of facility sizes

Variety of production environments

Facility Type ³	Minimum Canopy Area (square feet)	Median Canopy Area (square feet)	Maximum Canopy Area (square feet)
Greenhouse	13,500	348,000	5,000,000
Indoor	500 (research chamber) 5,000 (production)	60,000	280,000

Electricity End Uses for Indoor CEA Operations

Canopy Area of U.S. CEA Facilities

Figure data source: Southern California Edison Market Characterization of Indoor Agriculture (Non-Cannabis), 2021.

https://www.etcc-ca.com/reports/market-characterization-indoor-agriculture-non-cannabis

Table data source: RII, CEA Market Characterization Report, 2021.

https://catalog.resourceinnovation.org/item/controlled-environment-agriculture-market-characterization-report-433708

Choose Your Level of Engagement

Connect to Program Goals

Determine what resources you have

Plan for Subject Matter Experts

CEA can fit under C&I or agriculture programs

Invest in CEA at which depth:

- Passive
- Reactive
- Proactive

Category	Perceived Opportunity to Program Goals CEA Efficiency Program Approach				
Passive Small		No investment in CEA-specific resources. Some incentives offered for CEA customers via existing C&I or Ag programs. Staff have limited experience processing structured custom projects. Staff are directly involved in project management. No subject matter experts (SME). No proactive engagement in the CEA market. Higher exposure to realization rate impacts during program evaluation due to lack of SME and rigor.			
Reactive	Medium	Some intermittent program investments in cost share opportunities that provide access to tools and resources. Resources develop cultivators to get more projects in the pipeline. Variety of incentives offered for CEA customers via existing and emerging C&I and Ag programs. Staff have some experience processing structured custom CEA projects. Staff are directly involved in project management and may leverage additional SME as needed. Program reactively provides basic market engagement. Moderate exposure to realization rate impacts during program evaluation due to lack of SME and rigor.			
Proactive	Large	Recurring program investments in cost sharing opportunities that provide access to tools and resources. Resources develop cultivators, the design and construction supply chain, and emerging technology to get more projects with more measures in the pipeline. Variety of specialized incentives offered for CEA customers via dedicated programs and existing C&I and Ag programs. Staff have substantial experience processing structured custom CEA projects and may work with an implementer SME to provide project management services. Program proactively provides advanced market engagement. Lower exposure to realization rate impacts during program evaluation due to lack of SME and rigor.			

Strategic Networking

Participate in CEA Industry Organizations

Several organizations address CEA issues:

DLC, IES, ASHRAE, AHRI, ASTM

Some organizations are dedicated to CEA:

• RII, GLASE, ASABE, OptimIA

Join RII as a Member

19 utilities and program implementers are members of RII and the Technical Advisory Council

 Participate in RII's Utility Working Group to learn from veteran program managers and network strategically with organizations across North America

Intensity of Horticultural Lighting Applications

Estimate Savings Potential by Crop Type

Many utilities in regions with CEA facilities pursue horticultural LED lighting solutions as their first CEA efficiency measure given their familiarity with C&I LED lighting programs.

- The average horticultural rebate in these states for a 600 W LED fixture replacing a 1,000 HPS fixture is approximately \$160
 - Offsets a fixture cost of ~\$950 \$1,000
- Programs in 35 states support efficient horticultural lighting equipment
- Inquire from growers about their crop types to understand lighting system type and savings opportunity

Сгор Туре	Intensity of Horticultural Lighting Demand Medium-High	
Cucumbers		
Tomatoes	High	
Peppers	High	
Greens	Medium	
Fresh Herbs	Low-Medium	
Strawberries	Medium	
Mushrooms	Low	
Nursery & Floriculture	Low-Medium	

Intensity of Horticultural Lighting Demand

Increase Photosynthetic Photon Efficacy (PPE)

Incentivize Growers to Use High-Performance LED Solutions

Depending on the application, CEA growers choose a variety of equipment types including:

- LED
- High-Intensity Discharge
- Fluorescent

Photon efficacy (PPE) can be the backbone of savings estimates for CEA lighting programs

States like CA are creating PPE minimums for CEA

ASHRAE 90.1 is implementing the same PPE minimums:

• 1.7 for greenhouse μmol/J, 1.9 for indoor μmol/J

DLC QPL lists products with PPE > 1.9 μ mol/J (with +/-5% tolerance)

Photosynthetic Photon Efficacy (PPE) by Horticultural Light Fixture Type

Quantifying Performance of Lighting Equipment

Best Practices for LED Offerings

Working with commercial CEA growers

Calculating incentives for LED

- For indoor farmers
- For greenhouse growers

Use key inputs for savings calculations:

- PPE (efficacy)
- PPFD (light intensity or fluence rate)
- DLI (quantity of daily light received)

Characteristic	Sprout / Seedling ⁹	Vegetative / Budding	Flowering / Fruiting
Fixture Type	T5 HO T8 T12	HPS	HPS
Wattage Range	60 - 435 W	400 - 1,000 W	650 - 1,000 W
Luminaire PPE Range ¹⁰	0.7 - 1.2 μmol/J	1.0 - 1.7 µmol/J	1.0 - 1.7 μmol/J
Fixture Type ¹¹	LED	LED	LED
Wattage Range 12	15 - 200 W	150 - 600 W	150 - 1,200 W
Luminaire PPE Range ¹³	1.8 - 3.0 µmol/J	1.8 - 3.0 µmol/J	1.8 - 3.0 µmol/J

Typical Lighting Equipment for Stages of CEA Plant Growth

Horticultural HVAC Applications

Vital Environmental Controls for CEA

HVAC systems can be a second CEA efficiency measure to pursue but can be more challenging to deliver

Energy source impacts savings opportunity

Avenue for electrification / decarbonization

Requires program staff that have:

- Subject matter expertise for a diversity of technologies and growing environments
 - Plant-centric HVAC approaches
- The ability to quickly and accurately calculate savings and incentives
 - Baselines
 - Energy model inputs

	Vented Greenhouse	Sealed Greenhouse	Indoor Vertical Farm
Heating	Unit heaters, hot water systems (boilers connected to radiant warm-floor slab heating or bench heating, hydronic unit heaters, root zone heating), biomass heating, furnaces	Hot water systems, geothermal heat exchange systems, air to air heat exchangers, fan coil units, electric resistance systems, latent heat converters	Electric resistance systems heat pump systems, hot water systems, heat recovery chillers
Ventilation	Natural ventilation - ridge vents, gutter vents, side wall vents open- roof, retractable roof, powered fan systems for ventilation and exhaust	Sealed greenhouses do not bring in outside air	100% recirculating air
Airflow	Horizontal airflow fans (HAF)	Vertical air fans, destratification fans	HAFs and in-rack fan systems
Cooling Evaporative fan-and-pad, fog (mist) cooling and humidifying, chillers 15 Humidity Humidity Exhaust fans, wood-fired heating, sometimes plug-in dehumidification equipment Evaporative fan-and-pad, fog and integrated cooling & dehumidification High-pressure fogging and integrated cooling & dehumidification Central dehumidification system		Integrated cooling &	
		Central dehumidification system	dehumidification

Common CEA HVAC Systems by Facility Type

CEA HVAC Measure Savings Potential

Energy Saving CEA Measure	Energy Savings Potential	
Greenhouse Envelope Systems ¹⁷ : Enclosure upgrades Shade and thermal curtains Curtain controls	5 - 50%	
Horticultural Lighting Systems ¹⁸ : Air-cooled LED light fixtures Liquid-cooled LED lighting systems LED lamps Lighting controls	30 - 40%	
HVAC Systems ¹⁹ : Heating systems Root zone heating systems Cooling systems Variable frequency drives (pumps and fans) Humidity management equipment Environmental controls Airflow controls	20 - 30%	
Integrated Controls Systems ²⁰ : • Envelope, lighting and HVAC controls integrations • Water and environmental controls integrations	15 - 30%	

Energy Savings Potential of CEA Measures

Baselines for Energy & Demand Savings

- Establish/agree upon baseline efficiency with evaluators
- Ensure savings integrity
- Proactively avoid surprises
- Maximize savings and incentives

Baselines for Components and Systems

- Lighting technology and controls
 - By crop, stage of growth, and type of facility
- HVAC & Dehumidification and controls
 - Greenhouse vs. fully indoors
 - Ventilation vs. unvented
- Heating systems
- Pumping systems
- Envelope

Baselines can be especially tricky for new construction and when there is no clear governing code or industry standard practice.

Facility Size and HVAC Capacity

Scale of Operations Influences System Choices for Modeling

There is no rule of thumb

Crop type can drive system selection

Existing buildings may have limited options

Facility Cultivation Area	HVAC System Capacity	Greenhouse CEA HVAC Solutions	Indoor CEA HVAC Solutions
<10,000 sq ft	75 tons or less	Direct expansion (DX) cooling, unit heaters, passive ventilation via venting of building envelope	Direct expansion (DX) units with standalone dehumidification systems like roof-top units (RTUs) split systems, and ductless heat pumps
10,000 - 30,000 sq ft	75 - 300 tons	Evaporative cooling walls (pad & fan systems), radiant heating systems, exhaust and circulation fans	Air-cooled chillers, hot water coils, heat pump systems, electric heat
>30,000 sq ft	Greater than 200 tons	Ground-source heating systems, comprehensive ventilation systems	Water-cooled chillers, heat recovery systems, comprehensive ventilation system

Existing Baselines

Consider the electric and gas savings from:

- TRMs
- Industry Standard Practices
- IECC 2021
- ASHRAE 90.1 2019
- California Title 24
- MA, IL
- ASABE Standards, Engineering Practices (like EP653)
- Others
 - DLC Technical Requirements for Hort Lighting
 - Benchmarks / modeling
 - Pre- and post-project PowerScore KPIs
 - Existing facility
 - Existing practices

Shifting Baselines

Programs must stay up-to-date with rapidly-changing industry trends, technologies, and practices that may require mid-program changes

Custom & Structured Custom Approaches

Programs will need to be structured differently based on customer base and existing offerings

No one-size-fits all

- Augmenting existing offering or starting from scratch
- Custom project approaches provide specificity to capture variability among facilities
- Building depth and breadth of projects can streamline savings and incentive calculations

	Custom	Prescriptive	Structured Custom
Greenhouse Covering Incentives	54%	38%	8%
Lighting Incentives	40%	35%	25%
HVAC Incentives	55%	28%	17%
Controls Incentives	67%	20%	13%

Prescriptive Approaches

After Evaluation of Custom Projects

Scale up with enough historical projects

Reduce risk and lower program costs by:

- Focusing on the subset of technologies and measures with the most data
- Repackage existing programs with adjusted inputs
- Clearly defining eligibility requirements

Risk and Cost impacts of Different Program Approaches

Financial Incentive Offerings

Provide Flexibility

Support a diversity of customers

Encourage many to participate with defined benefits

Given the dynamic nature of the industry, keep options open by:

- Provide structure for multiple technologies
- Understand where each technology falls on the custom-prescriptive risk/cost spectrum

Savings Metric	Incentive Range	Incentive Structure Notes
\$/kWh	\$0.009/kWh (net lifetime) to \$0.45/kWh (custom) Average \$0.14/kWh	Low end: dehumidifiers High end: LED horticultural fixtures
\$/kW	\$68 - 500/kW Average \$237/kW	Offers load shifting and time of use benefits
\$/Watt	\$0.09/Watt - \$1/Watt Average \$0.47/Watt	Prescriptive or structured custom programs for LI horticultural fixtures and daylighting controls
\$/unit	\$50 - 250 / fixture for LED light fixtures	Prescriptive or structured custom programs for Lt horticultural fixtures
\$/hp	\$20 - 200 / hp	Prescriptive or structured custom programs for process VFDs
\$/sq ft	\$0.02 - 0.50 / sq ft Average \$0.18 / sq ft	Infrared (IR) polyethylene greenhouse coverings
\$/sq ft	\$0.03 / sq ft - \$0.25 / sq ft Average \$0.11/sq ft	Greenhouse controllers
\$/sq ft	\$05 / sq ft - \$1.17 / sq ft Average \$0.45 / sq ft	Greenhouse thermal curtains

Incentive Structures and Savings Metrics

Case for Continuous Improvement

Systematic continuous improvement approach

Strategic energy management (SEM) strategies can be applied for CEA customers and facilities

SEM programs can deliver cost-effective savings and increase the equity of CEA programs through:

- Technical support
- Organizational commitments
- Energy champions
- Benchmarking
- Energy Modeling
- Peer-to-peer learning
- Cohorts open to all sizes
- Self-serve options

Which all leads to improving business competitiveness

Strategic Energy Management for CEA - Lessons Learned

Enthusiastic participation can be expected

- Customers value technical expertise, prioritized opportunities, and team accountability
- Mixed cohort may be best

Modeling can be especially challenging

- Seasonality of production, varying room temperatures, solar gains, summer operation
- Bottoms-up engineering calculations may be required

Customer engagement

- Reduce skepticism bring your experts!
- Use tried and true recruitment techniques
- Avoid harvest/busy seasons
- Involve key personnel in the energy team growers need to be aware

CEA Isn't [That] Unique

Successful outcomes rely on same themes as those for conventional participants

- Leadership support
- Team engagement
- Consistent communication
- Accountability

Similar measures as with conventional participants

- Maintenance & preventative maintenance
- Setpoint adjustment
- Sensor calibration
- Turn it off / shut the door / awareness campaigns

Results for CEA Facilities Stack Up Against Conventional Participants

COOLER 1

Keep Door Closed

Mushroom grower

Yr 1: 2.5%

Yr 2: 6.5%

Yr 3: ??

kWh reduction

12% electricity savings in cut flower greenhouse

3% natural gas savings first year greenhouse

4% natural gas savings at nursery

Get Verified 🕢

Benchmarking: PowerScore

Validate Performance & Savings with Benchmarking

- Energy kBtu/sqft
 - Electricity & Other Fuels
- Energy lbs/kBtu
 - Electricity & Other Fuels
- Emissions tons CO2e / sq ft
- Emissions lbs / tons CO2e
- Water gallons / sq ft
- Water lbs / gallons
- Waste lbs/sqft
- Waste lbs/lbs

Performance Snapshot

#47948861-20, Vertical Indoor Schenectady, NY, Climate Zone 5A, December 2019 - November 2020

Leafy Greens 9% of canopy area			
Facility			
Canopy Productivity ®	0.3 kg/sqft	0% change	
Energy			
Energy Productivity ®	0.00187 kg / kBtu	↑ 21% better	
Electric Productivity	0.00982 kg/kBtu	★ 20% better	

Get Started with PowerScore

Create Performance Snapshots to get KPIs

Visit <u>ResourceInnovation.org/PowerScore</u> to learn more

Use the online survey at powerscore.resourceinnovation.org/go-cea

Schedule a benchmarking session with RII Engineering team at calendly.com/carmen-rii

Program Products and Services

Develop and deploy strategic communication, products, and services for your CEA customers

Key content considerations:

- Speak their language
- Know how they grow
- Accessibility
- Build bridges

Products	Services		
Information sharing and technical tools directly used by program staff and/or customers	Involve a subject matter expert performing services on behalf of the efficiency program		
Lower cost investment	Higher cost investment		
Passive or reactive levels of engagement	Proactive engagement to develop and serve the utility market		
Dependent on program staff and customers to leverage them	External service providers generate positive demand cycle for program offerings		
CEA program websites	Educational curriculum		
Savings calculators	Virtual classrooms		
Resource benchmarking platforms	Live workshops		

CEA Program Offerings

Technical Assistance

Support growers with subject matter experts

Implementers and consultants can elevate programs through:

- Supporting projects
- Engaging the supply chain
- Training up staff

Technical Support Areas	Cultivator Benefits	Program Benefits	
Selecting facility sites	Flag electric and gas service increases	Expose customers to program offerings early	
Estimating energy consumption and demand	Forecast monthly and annual energy bills	Educate customers so they can succeed	
Understanding program eligibility requirements	Assess facility for projects and incentives	Streamline program implementation	
Understanding product eligibility requirements	Understand available efficient equipment	Devote time to eligible customers	
Designing profitable facilities	Identify efficiency opportunities	Increase participation in programs	
Determining feasibility & cost effectiveness	Make decisions about efficiency projects	Increase number of customers program can serve	
Estimating energy savings and potential incentives	Maximize return on investment	Produce valid savings claims at attractive yield rates	

Common Areas Covered by CEA Subject Matter Experts

Educational Curriculum and Training

Develop educational programming for CEA customers outside of basic program landing page

Connect cultivators to program by:

- Raising awareness
- Highlighting research
- Building the pipeline
- Developing the workforce and supply chain

Visit us at www.ResourceInnovation.org

P.O. Box 5981
Portland, Oregon 97228
derek@resourceinnovation.org
gretchen@resourceinnovation.org

