

Water Circularity in CEA Facilities: Reduce, Remediate, Reuse

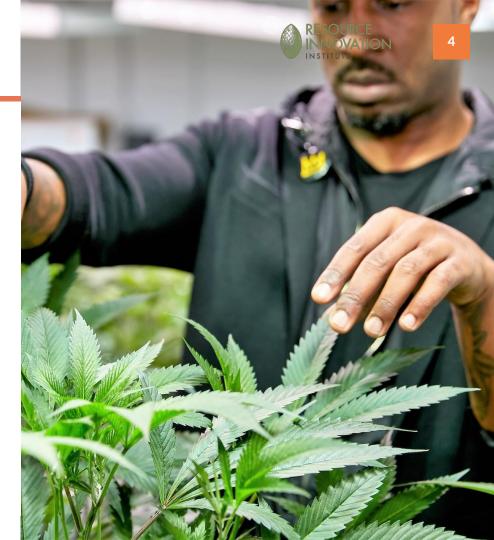
September 28, 2023

SECTION 01

INTRODUCTION

POLL ALERT! What kind of facility are you cultivating in?

- Small indoor building
- Warehouse


N/A

- Standard, vented greenhouse
- Semi-Sealed, air-conditioned greenhouse
- Container farms or pods

Agenda

Welcome, Introductions and Context	1:30 - 1:40
Economic Rationale and Water Conservation Praction	
	1:41 - 1:53
Water Disinfection and Purification Practices	1:54 - 2:16
Getting to Zero Liquid Discharge: Evaporators and \	/acuum
Distillation	2:17-2:39
Water Storage and Biological Remediation	2:40-2:45
ICF Incentives for Energy Savings	2:45 - 2:53
Q&A	2:53-3:00

Today's Experts

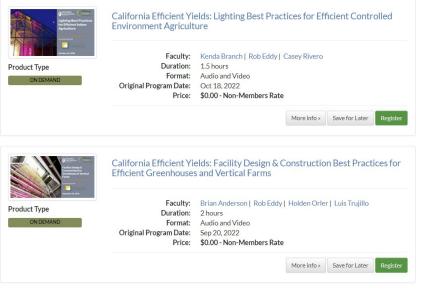
Rob Eddy

Jeff Martens

Carlos Salazar

Caleb Hayhoe

Access Your California Virtual Classroom



Continue Learning Online

Free guidance on efficient cultivation

- Recordings of live workshops
- Tip clips
- Downloadable resources

Create an account at <u>resourceinnovation.org/California</u>

All live workshops are available for on-demand viewing!

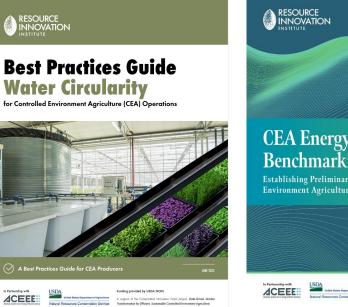
Register for Upcoming Workshops

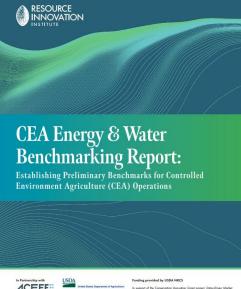
SCE funded Workshops:

October 12 | The Critical Role of Building Envelopes and Air Movement in CEA Facilities

October 26 | Trust But Verify: Commissioning CEA Buildings and Systems

Register and access other free resources on the <u>RII catalog</u>





CEA Resources

in Parmership with

ACEEE

notion for Efficient, Sustainable Controlled E

Best Practices Guide Featuring contributions from 15 Working Group member companies

Benchmarking Report Featuring annual resource consumption and productivity of twelve producers growing a variety of crops in greenhouse and indoor facilities across the US.

Access the reports for free on the <u>RII catalog</u>

Start Collecting Data: Benchmarking

What data should you collect?

- Energy consumption (all fuel types)
- Water consumption
- Water quality
- Production
- Use controls & automation systems to improve data collection (improve understanding of subsystems)

Get Verified O

Calculated PowerScore

#47974088-21, Indoor, Grantsville, MD, Climate Zone 5A, July 2020 - June 2021

Energy			45 th percentile	Year-Over-Year
Non-Electric Efficiency 💿	188 kBtu / sq ft	懀 30% better	71 st percentile	
Emissions Efficiency 🛷	13.4 kg CO ₂ e / sq ft	懀 31% better	100 th percentile	24.4% better
Lighting Efficiency 🔊	2,820 kWh / day	懀 87% better	81 st percentile	select a second PowerScore for comparison snapshot or add another: #47974085-21, Motown Gro
HVAC Efficiency ⊚	392 kBtu / sq ft	≣ 0% change	3 rd percentile	Overall: Middle-of- the-Pack
Water			94 th percentile	Your operation's overall performance within the data set of indoor facilities in PowerScore's Ranked Data Set:
Water Efficiency 💿	0.523 gal / sq ft	4 8.2% worse	97 th percentile	
Waste			68 th percentile	45 th
Waste Efficiency 🛛	0.24 lbs / sq ft	≣ 0% change	80 th percentile	Come back to check your PowerScore regularly to see how your rank changes as more facilities benchmark their performance!

Oldies			
Facility			
Canopy Productivity 🔊	0.243 kg / sq ft	■ 0% change	50 th percentile

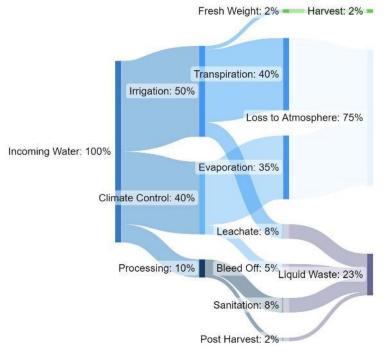
POLL ALERT! What kind of facility are you cultivating in?

Discuss Results

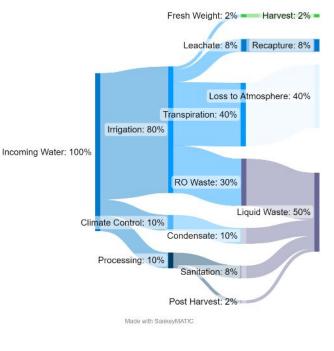
Reducing Water Use in CEA Operations

SECTION 02

Knowledge Check! About how much water that plants take up stays in the plant?


• 2%

- 28%
- 52%
- 98%



Fate of Water in CEA Operations

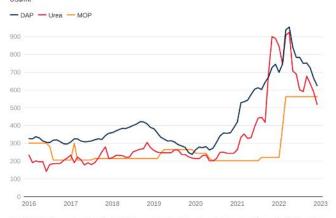
Standard Greenhouse

Standard Indoor Farm (w/o condensate recapture)

14

Production Method	Country	Product water use (L/kg)	Product water use (gal/lb)
Open field, general	Israel, Spain, Turkey	100-300	12-36
Open field, drip irrigation	Israel	60	7
Greenhouse, unheated plastic	Spain	40	5
Glasshouse, unheated	Israel	30	4
Greenhouse, regulated ventilation, plastic	Spain	27	3
Glasshouse, advanced controls, CO ₂	Netherlands	22	3
Glasshouse, advanced controls, CO ₂ , closed hydroponic system	Netherlands	15	2
Closed Greenhouse, advanced controls, CO ₂ , closed hydroponic system	Netherlands	4	0.5
Greenhouse, evaporative cooling	Mexico	Estimated: 100	Estimated: 12

Modified from Nederhoff, Elly & Stanghellini, Cecilia. (2010).


Economic Rationale For Reducing Water Consumption

Recirculating irrigation water has been shown to reduce water consumption by 20%-40%

Reducing irrigation water has been shown to reduce fertilizer costs by **40%-50%**

CEA producers report ROI in as little as two years due to fertilizer cost reduction

Note: DAP = diammonium phosphate. MOP = muriate of potash. mt = metric ton. Last observation is December 2022.

Source: Bloomberg; World Bank.

Sources of Water Waste in CEA Operations



RESOURCE
RESOURCE INNOVATION
INSTITUTE

Priority Rank	Type of Water Waste	Relevant To All Facilities	Potential High Waste Volume	Release Causes Environmental Harm	Potential Crop Damage	Substitute for RO Water	Potential to Improve ROI on Treatment Costs	Difficult to Remediate
1	Over Irrigation and Leaks	х	x	х	x		x	
2	Irrigation Leachate	х	x	x			x	
3	Pesticide Drench/ Overspray	x		x				x
4	RO Reject Water		x					x
5	Evaporative Cooling Pad Bleed-Off		x					х
6	Condensate		x			x		-
7	Washdown Water	x						x
8	Blowdown Water							x

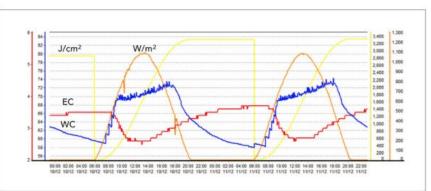
Reducing Irrigation Waste in Hort Substrate Culture

RESOURCE INNOVATION

Timeclock Window of 2 hours after sunrise until 2 hours before sunset

Accumulated Light

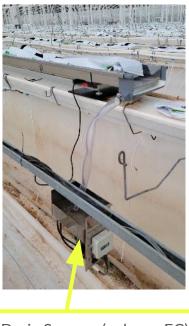
Irrigates on light sum since previous irrigation


Maximum Interval

Maximum number of minutes since last irrigation (cloudy weather)

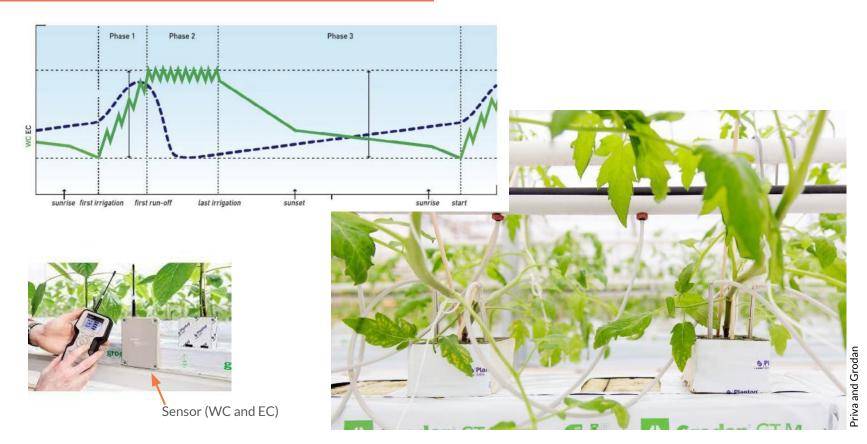
> **Crop Aging** Accum Light and Max Int adjusted by age

Reducing Irrigation Waste by Smart Programming


Example of layering environmental variables to trigger irrigation

Priva and Grodan

Reducing Irrigation Waste by Weight Scale Measurement



Drain Sensors (volume, EC)

Reducing Irrigation Waste by Water Content Sensing

Reducing Irrigation Waste by Using Recirculating Systems

Nutrient Film Technique

Deep Water Culture

Raft Culture

Aeroponics

Vertical NFT/Aeroponics

An Often Overlooked Source of GH Water Waste...

Production Method	Country	Product water use (L/kg)	Product water use (gal/lb)
Open field, general	Israel, Spain, Turkey	100-300	12-36
Open field, drip irrigation	Israel	60	7
Greenhouse, unheated plastic	Spain	40	5
Glasshouse, unheated	Israel	30	4
Greenhouse, regulated ventilation, plastic	Spain	27	3
Glasshouse, advanced controls, CO ₂	Netherlands	22	3
Glasshouse, advanced controls, CO ₂ , closed hydroponic system	Netherlands	15	2
Closed Greenhouse, advanced controls, CO ₂ , closed hydroponic system	Netherlands	4	0.5
Greenhouse, evaporative cooling	Mexico	Estimated: 100	Estimated: 12

Modified from Nederhoff, Elly & Stanghellini, Cecilia. (2010).

Reducing Climate Control Water Waste

Knowledge Check! About how much water that plants take up stays in the plant?

Discuss Results

Water Quality in CEA Operations

SECTION 03

POLL ALERT! How do you measure water usage? Check all that apply:

- No metering
- One meter incoming water
- More than one meter
- Tracked by irrigation controller
- Tracked by climate control computer

Topics

- Water Quality
- Reverse Osmosis
- Filtration
- Disinfection
- Design considerations

Water Quality RII Best Practice Guide

Characteristic	Desired Level	Characteristic	Desired Level	Characteristic	Desired Level
Soluble Salts (EC)	0.0-0.5 dS/m	Nitrogen {N} -Nitrate (NO ₃) Ammonium (NH ₄)	<5 ppm <5 ppm	Iron (Fe)	<l ppm<="" th=""></l>
pН	5.4-6.8	Phosphorus (P)	<l ppm<="" th=""><th>Boron (B)</th><th><0.3 ppm</th></l>	Boron (B)	<0.3 ppm
Alkalinity (Carbonate, CaCO ₃) (Bicarbonate, HCO ₃)	40-65 ppm 40-65 ppm	Potassium (K)	<10 ppm	Copper (Cu)	<0.1 ppm
Hardness (CaCO ₃ equivalent)	<100 ppm	Calcium (Ca)	<60 ppm	Zinc (Zn)	<0.2 ppm
Sodium (Na)	<50 ppm	Sulfates (SO₄)	<30 ppm	Aluminum (Al)	<2 ppm
Chloride (Cl)	<71 ppm	Magnesium (Mg)	<5 ppm	Chloride (Cl)	<2 ppm
Sodium Adsorption Ratio	<4	Manganese (Mn)	<1 ppm	Fluoride (F)	<lpre>>1 ppm</lpre>

WaterQual at www.cleanwater3.org/wqi.asp.

Table 1. Desirable characteristics of high-qualityirrigation water.6

Water Quality - Results from well in Central Coast, CA

lons	Well	Guidelines	Units
рН	7.4	5.4-6.8	-
Alkalinity "M"as CaCO₃	206	40-65	ppm
Fluoride as F	0.2	<1	ppm
Nitrate as NO₃	8.1	<5	ppm
Sulfate as SO₄	385	<30	ppm
Chloride as Cl	36.8	<71	ppm
Specific Conductance at 25°C	1210	760	μmhos
Aluminum Total as Al	<0.01	<2	ppm
Calcium Total as Ca	113	<60	ppm
Iron Total as Fe	<0.01	<1	ppm
Hardness Total as CaCO₃	505	<100	ppm
Potassium as K	3	<10	ppm
Magnesium Total as Mg	53.9	<5	ppm
Manganese Total as Mn	<0.005	<1	ppm
Sodium as Na	60.2	<50	ppm
Phosphorus total as P	<0.05	<1	ppm
Silica Total as SiO₂	38.2		ppm
Zinc Total as Zn	<0.005	<0.2	ppm

Water Quality

lons	Well	Guidelines	Units	
рН	7.4	5.4-6.8	-	CLEAN
Alkalinity "M"as CaCO₃	206	40-65	ppm	
Fluoride as F	0.2	<1	ppm	home water problems - training tools research ask an expert newsletter about search
Nitrate as NO₃	8.1	<5	ppm	WaterQual
Sulfate as SO₄	385	<30	ppm	This tool interprets the quality of a water source for use in irrigation of plants in greenhouses and nurseries.
Chloride as Cl	36.8	<71	ppm	Enter data for quality parameters you are interested in (you do not need to enter data for all the parameters) and click the 'Interpret' button.
Specific Conductance at 25°C	1210	760	µmhos	Total ions and alkalinity
Aluminum Total as Al	< 0.01	<2	ppm	pH 7.4 no units required + Alkalinity 206 ppm CaCO3 +
Calcium Total as Ca	113	<60	ppm	Electrical conductivity (EC) 1210 µSicm Total Dissolved Saits (TDS) mg/L • Hardness (ppm Ca+Mg) 505 mg/L Sodium adsorption ratio (SAR) no units required •
Iron Total as Fe	< 0.01	<1	ppm	Nutrients and ions
Hardness Total as CaCO₃	505	<100	ppm	Nilrogen (N) mg/L or ppm - Copper (Cu) mg/L or ppm -
Potassium as K	3	<10	ppm	Phosphorus (P) mg/L or ppm P Boron (B) mg/L or ppm • Potassium (K) mg/L or ppm • Molybdenum (Mo) mg/L or ppm •
Magnesium Total as Mg	53.9	<5	ppm	Catcium (Ca) mg/L or ppm Silicon (Si) mg/L or ppm • Magnesium (Mg) 53.9 mg/L or ppm Nickel (Ni) mg/L or ppm •
Manganese Total as Mn	<0.005	<1	ppm	Sulfate-sulfur (S) 385 mg/L or ppm S Sodium (Na) 60.2 mg/L or ppm • Iron (Fe) mg/L or ppm • Chiorde (Cl) 84 • mg/L or ppm •
Sodium as Na	60.2	<50	ppm	Manganese (Mn) mg/L or ppm Fluoride (F) mg/L or ppm - Zinc (2n) mg/L or ppm -
Phosphorus total as P	<0.05	<1	ppm	Physical water quality
Silica Total as SiO₂	38.2		ppm	Total suspended solids (TSS) mg/L • Turbidity • NTU •
Zinc Total as Zn	<0.005	<0.2	ppm	

Water Quality

lons	Well	Guidelines	Units	Measurement	Test value	Result	Explanation of result
рН	7.4	5.4-6.8	-	рН	7.4	High (>7)	Interpreting the pH and alkalinity results together
Alkalinity "M"as CaCO₃	206	40-65	ppm	Alkalinity	206 ppm CaCO ₃	High (>150.01ppm	pH and alkalinity levels this high means some pH adjustment (addition of acid) will be required in the spray tank with certain
Fluoride as F	0.2	<1	ppm			CaCO ₃)	agrichemicals - check the pesticide label. Acidification is needed for hydroponic growers to lower pH to 6. For irrigation of containerized
Nitrate as NO₃	8.1	<5	ppm				plants, injection of acid is recommended to reduce alkalinity and
Sulfate as SO₄	385	<30	ppm				avoid an increase in substrate-pH over time. You may also need to include ammonium or urea nitrogen at 40% or above of total N in
Chloride as Cl	36.8	<71	ppm				fertilizer to help avoid a rise in pH when using hydroponics or a container substrate.
Specific Conductance at 25°C	1210	760	μmhos				container substrate.
Aluminum Total as Al	<0.01	<2	ppm	Electrical conductivity (EC)	1210 µS/cm	Moderate (>760 µS/cm)	A moderate to high level of dissolved ions. Likely to lead to salt
Calcium Total as Ca	113	<60	ppm	, (,	(2700	(accumulation in the substrate or recirculating solution, resulting in hard stunted growth and root damage. During mist propagation o
Iron Total as Fe	<0.01	<1	ppm				overhead watering, may lead to salt burn on foliage. Manage with reverse osmosis, blending with a more pure water source such as
Hardness Total as CaCO₃	505	<100	ppm				rain water, leaching during irrigation, or periodic replacement of
Potassium as K	3	<10	ppm				recirculating solution. Further water testing is needed to determine which ions are present, including fertilizer nutrients, alkalinity,
Magnesium Total as Mg	53.9	<5	ppm				chloride, or sodium.
Manganese Total as Mn	<0.005	<1	ppm	Hardness (ppm	505 mg/L	High (>300.1	Ca and Mg levels this high are likely to produce residues on plant
Sodium as Na	60.2	<50	ppm	Ca+Mg)		mg/L) leaves, reduce efficacy and solubility of agrich irrigation equipment, and cause scaling and b	leaves, reduce efficacy and solubility of agrichemicals, clog
Phosphorus total as P	<0.05	<1	ppm				irrigation equipment, and cause scaling and buildup on greenhouse boilers. Treatments such as reverse osmosis and acid injection are
Silica Total as SiO₂	38.2		ppm				recommended.
Zinc Total as Zn	<0.005	<0.2	ppm		<u></u>		

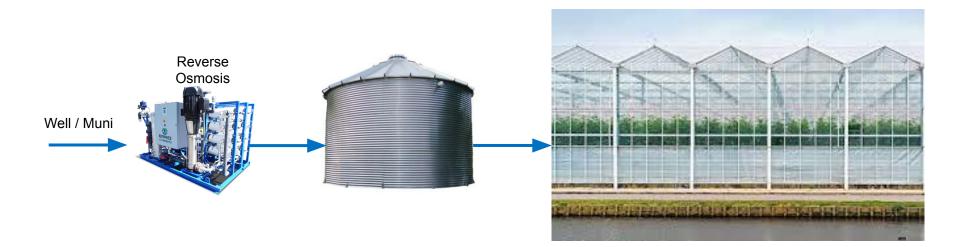
Water Quality - Results from Los Angeles, CA Municipality

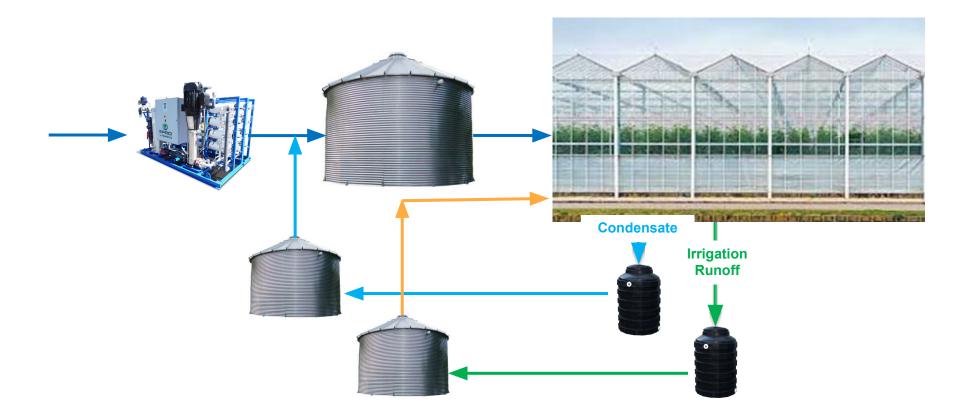
lons	Well	LA Muni	Guidelines	Units
рН	7.4	8	5.4-6.8	-
Alkalinity "M"as CaCO₃	206	120	40-65	ppm
Fluoride as F	0.2	1.3	<1	ppm
Nitrate as NO₃	8.1	<10.0	<5	ppm
Sulfate as SO₄	385	218	<30	ppm
Chloride as Cl	36.8	85.2	<71	ppm
Specific Conductance at 25°C	1210	1040	760	μmhos
Aluminum Total as Al	<0.01	0.18	<2	ppm
Calcium Total as Ca	113	65.8	<60	ppm
Iron Total as Fe	<0.01	<0.01	<1	ppm
Hardness Total as CaCO₃	505	273	<100	ppm
Potassium as K	3	4.5	<10	ppm
Magnesium Total as Mg	53.9	26.1	<5	ppm
Manganese Total as Mn	<0.005	<0.005	<1	ppm
Sodium as Na	60.2	93.4	<50	ppm
Phosphorus total as P	<0.05	<0.05	<1	ppm
Silica Total as SiO₂	38.2	7.15		ppm
Zinc Total as Zn	<0.005	0.106	<0.2	ppm

Table 7. Comparison of water attributes of high pH, alkalinity and hardness.

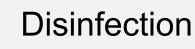
	High pH	Alkalinity	Hardness	
Definition	Solutions with a pH value >7. A basic solution, as opposed to acidic.	Ability of the water to resist pH changes that occur due to acids. "Buffering capacity."	Amount of Ca and Mg in the water	
Cause	Higher concentrations of OH ions than H* ions	Carbonates from limestone or dolomite bedrock	Calcium and magnesium from limestone or dolomite bedrock	
Units of Measure	Expressed in logarithmic pH units	mEq/L, mg/L or ppm (meaning mg/L or ppm of calcium carbonate or bicarbonate equivalents)	mg/l or ppm	
Impact on CEA operations	Minimal impact in container substrates if alkalinity and hardness are within acceptable range, but in hydroponics directly affects micronutrient solubility. Also affects activity of many agrichemicals	Increases pH of root substrate over time as carbonates accumulate, resulting in nutrient deficiencies	Scale deposits on plants and irrigation equipment. Clogged nozzles lead to plant stress.	
Treatment	No treatment necessary if hardness and alkalinity within acceptable range for substrate production. High pH is adjusted with acid in hydroponic production.	Use of acidic fertilizer or acid injection into irrigation water. Reverse osmosis, deionization	Softening with KCl salts (not NaCl), reverse osmosis, deionization	

Water Quality - Results from Irrigation Runoff


lons	Well	LA Muni	Irrigation	Guidelines	Units
рН	7.4	8	5.2	5.4-6.8	-
Alkalinity "M"as CaCO₃	206	120	4.7	40-65	ppm
Fluoride as F	0.2	1.3	0.1	<1	ppm
Nitrate as NO₃	8.1	<10.0	665	<5	ppm
Sulfate as SO₄	385	218	120	<30	ppm
Chloride as Cl	36.8	85.2	<0.5	<71	ppm
Specific Conductance at 25°C	1210	1040	1970	760	μmhos
Aluminum Total as Al	<0.01	0.18	<0.01	<2	ppm
Calcium Total as Ca	113	65.8	119	<60	ppm
Iron Total as Fe	<0.01	<0.01	1.63	<1	ppm
Hardness Total as CaCO₃	505	273	418	<100	ppm
Potassium as K	3	4.5	268	<10	ppm
Magnesium Total as Mg	53.9	26.1	29.6	<5	ppm
Manganese Total as Mn	<0.005	<0.005	0.222	<1	ppm
Sodium as Na	60.2	93.4	9	<50	ppm
Phosphorus total as P	<0.05	<0.05	33	<1	ppm
Silica Total as SiO₂	38.2	7.15	0.53		ppm
Zinc Total as Zn	<0.005	0.106	0.291	<0.2	ppm


Water Quality - Results from Condensate

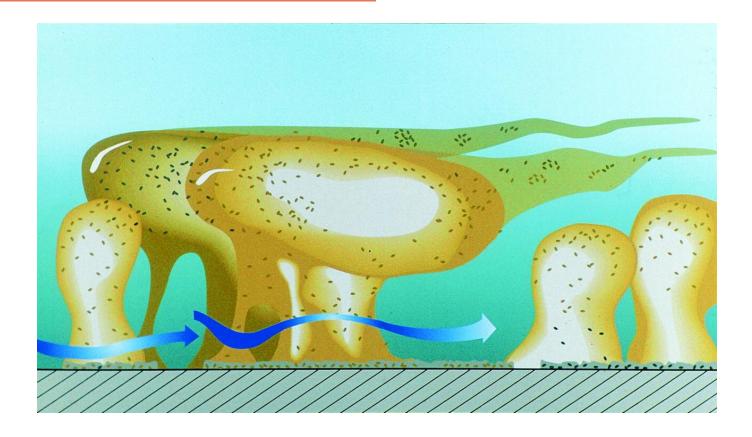
lons	Well	LA Muni	Irrigation	Condensate	Guidelines	Units
рН	7.4	8	5.2	6.5	5.4-6.8	-
Alkalinity "M"as CaCO₃	206	120	4.7	27.3	40-65	ppm
Fluoride as F	0.2	1.3	0.1	0.3	<1	ppm
Nitrate as NO₃	8.1	<10.0	665	3.8	<5	ppm
Sulfate as SO₄	385	218	120	7.9	<30	ppm
Chloride as Cl	36.8	85.2	<0.5	22.7	<71	ppm
Specific Conductance at 25°C	1210	1040	19 70	147	760	μmhos
Aluminum Total as Al	<0.01	0.18	<0.01	0.13	<2	ppm
Calcium Total as Ca	113	65.8	119	13.5	<60	ppm
Iron Total as Fe	<0.01	<0.01	1.63	0.02	<1	ppm
Hardness Total as CaCO₃	505	273	418	49	<100	ppm
Potassium as K	3	4.5	268	1.1	<10	ppm
Magnesium Total as Mg	53.9	26.1	29.6	3.65	<5	ppm
Manganese Total as Mn	<0.005	<0.005	0.222	<0.005	<1	ppm
Sodium as Na	60.2	93.4	9	9.3	<50	ppm
Phosphorus total as P	<0.05	<0.05	33	<0.05	<1	ppm
Silica Total as SiO₂	38.2	7.15	0.53	2.55		ppm
Zinc Total as Zn	<0.005	0.106	0.291	0.066	<0.2	ppm

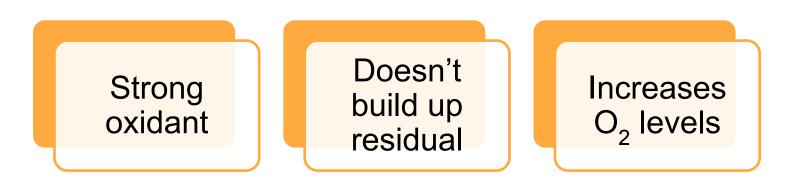




Dosage Mixing Location

<mark># u</mark> m	%	Interim Count	0		6	Ц	12	L L I	18	2		ectr 3		.ase 36	P	artic 42		4		800- 54		3940 v12 . 60
-11- -22- -33	-0.00- -26.25- -30.45- -13.21-			•		_			-				•			•			•	e.	1	Filter 0%
444 555 666 777	-9.28- -5.99- -3.70- -2.83-	16- 10- 6- 5- 3				-						• • • •	•		· · · ·				•			A-T 0 s
	-2.01- -1.10- -1.10- -0.91- -0.46-				:		: : :		:) :	: : :	: : :	:	•	· ·	: :	1	S-T 48 s
-13-13- -14-14- -15-15- -16-16-	-0.32- -0.23- -0.27- -0.00-			: :	: : :			: : : : :	· · ·		5 Not 100		•		:				· · ·	1	:	Dilut'n 1001:1
-17-17- -18-22- -19-27- -20-32- -21-37-	-0.62 -0.58 -0.27 -0.04 -0.09								2			:			:				• • • •			Offset 0.00V
-22-42 -23-47- -24-52- -25-57-	-0.04- -0.13- -0.00- -0.04-			•					:							•	1		•		1	Gain 5.55x
-26-62- -27-67- -28-72- -29-77- -30-82-	0.04 0.00 0.00 0.00 0.00			• • •	:		•	· ·		•		•	•	•	• • • •	• • •		• • •	•	•	1	Counts
-31-87- -32-92- -32-92-	-0.00 -0.00 -0.00-			:	20 0 20 0		:		1	i.			Ĩ	:		1			:	2		NSF Groups
Bin		Size		Tot coun				Cou				Surf area	a			olur				ass/ ppn		
1 2 3 4		 < 1 1-5 5-15 15-30 30-50 50-100 	3,0	0.0 998.1 978.1 978.1 988.8 552.3	19 79 37 34			0.0 79.2 18.6 1.7 0.3 0.0	0% 6% 5% 1%		1: 3: 2: 1	0.00 3.77 3.96 3.81 7.98 0.49	%%		1 2 3	0.00 3.18 7.54 4.63 1.21 3.43	3% 4% 3% 1%			0.00 0.85 4.71 6.61 8.38 6.29	536 101 161 333	

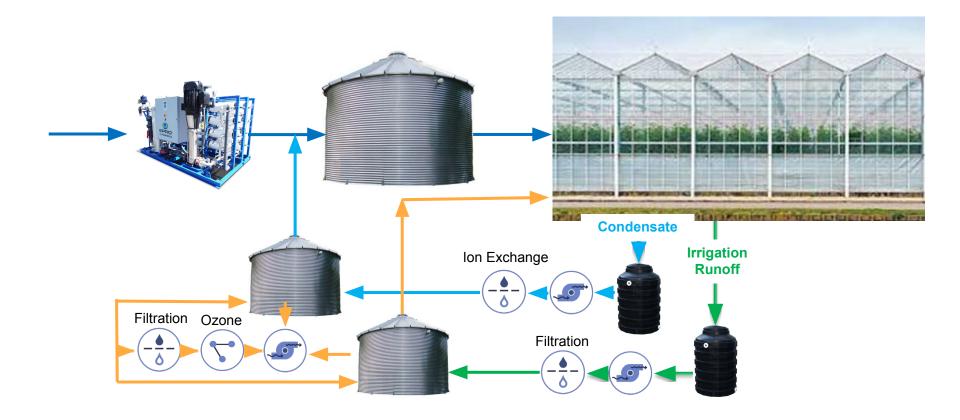



Bacteria growth on a surface

Advantage of ozone

Oxidizer	ORP (Volts)
Ozone	2.08
Hydrogen Peroxide	2.02
Chlorine Dioxide	0.95

15 Minute Half Life (@ pH 7) No stabilizer $O_3 + 2H^+ + 2e^- <-> O_2 + H_2O$



	Chemical Water Quality Treatment Systems													
				т	reatment R	tange						Footprint	Costs	
Technology	Notes	Pre Treatment Required	Solids / organic	454	N	utrients	Agri -	Controls	Reaction Time	Residual Effect*	Reject Water Waste?			
			material	Pathogens	N	р	chemicals	Biofilm					Capital	Operating
Chlorine	Caution with chloramine formation when using in fertigation solutions	Pre-filtration	V	1			Some	~	Minutes	**		Small	\$ - \$\$	\$
Chlorine Dioxide		Pre-filtration	~	1			Some	1	Minutes	++		Small	\$ - \$\$\$	\$\$ - \$\$\$
Peroxyacetic acid	(PAA) is a combination of acetic acid and hydrogen peroxide	Pre-filtration	V	\$			Some	1	Minutes	++		Small	s	55 - 555
ECA	Chlorine 2-10 ppm may damage lettuce	Softening	~	J				1	Minutes	+		Small		
Ozone		Pre-filtration	~	~			Some	~	Minutes	+		Medium	\$\$\$	\$
Copper Ionization		Pre-filtration		1					Hours	**		Small	\$\$\$	\$
Peroxyacetic acid + UV	Synergistic Effect	Pre-filtration	~	1			Some	1	Minutes	*		Medium	\$\$\$\$	\$\$\$ - \$\$\$\$
Peroxyacetic acid + Ozone	Synergistic Effect	Pre-filtration	~	1			Some	1	Minutes	**		Medium	\$\$\$\$	\$\$\$ - \$\$\$\$
Ozone + UV	Synergistic Effect	Pre-filtration	~	1			Some	~	Minutes	+		Medium	\$\$\$\$\$	\$\$
Deionization	Higher purity than typically needed	Pre-filtration and Reverse Osmosis to reduce cost	V	1	~		~		Minutes		***	Medium	\$\$\$\$\$	\$\$\$

*All technologies other than point treatments such as membrane filtration or UV have potential for phytotoxicity at high doses. Make sure to follow label and manufacturer recommendations on dose, monitoring, and maintenance.

77 Modified from West J, Huber, A, & Carlow, C (2018). Water Treatment Cuble for Greenhouses & Nurseries, Agriculture and Agri-Food Casada, and Filher, P (2020, February 18). Managing Water Quality and Boffin for Indoor Production. Indoor Ag Science Cale Jopindos 16). https://www.youtube.com/watch?v=07wWAUEB.

POLL ALERT! How do you measure water usage? Check all that apply:

Discuss Results

SECTION 04 Zero Liquid Discharge in CEA Operations

KNOWLEDGE CHECK!

Filtration can improve the efficiency of many other water treatments

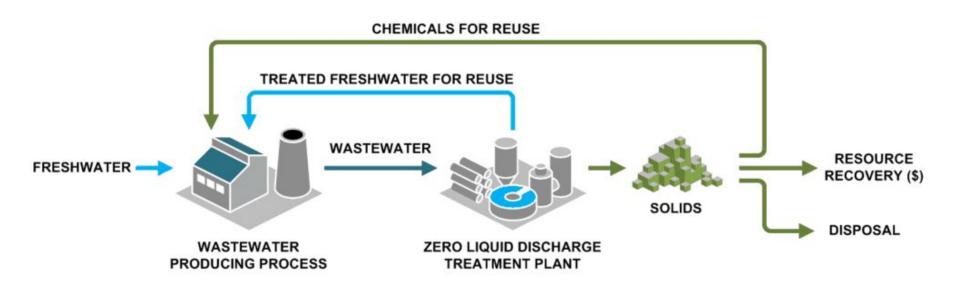
• True

• False

47

- What is it?
- History
- Why is it required/necessary
- How to achieve ZLD
- Pitfalls / Drawbacks

What is Zero Liquid Discharge (ZLD)?

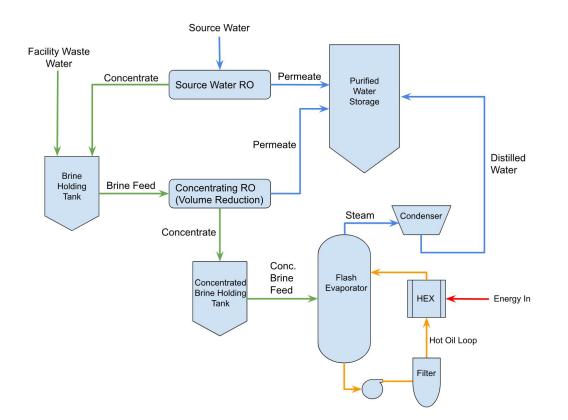


What is Zero Liquid Discharge (ZLD)?

- Developed in USA for power plants
- Increased salinity of Colorado river in the 1970's created need for ZLD
- Major markets include USA, China, and India
- Growth in electronics, fertilizer, mining, and chemical industries

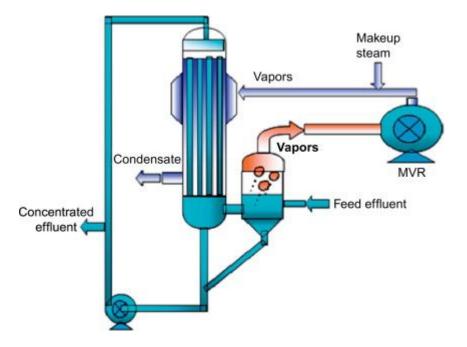
- Water Scarcity
- Environmental impact
- Growth of CEA
- Upcoming regulation
- Economic (in certain situations)
- Marketing

How to achieve ZLD?

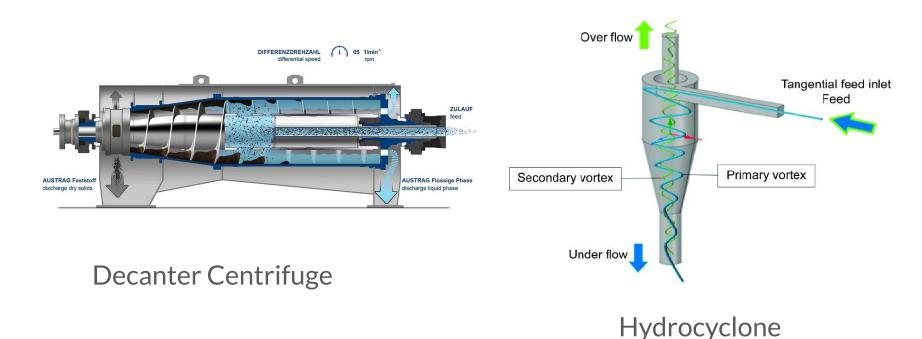


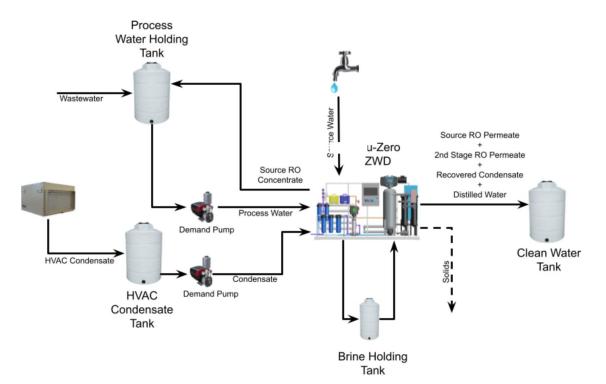
- New CEA facilities
- Existing CEA facilities
- Phased approach
- Technologies deployed

How to achieve ZLD? (Continued)



How to achieve ZLD? (Continued)


MVR Process


56

Solids Removal Final Stage

Process Flow Diagram of a ZLD system for CEA

- Increased costs
- Design differences from other water treatment systems
- Complex streams of water
- Increased use of chemicals
- Energy consumption
- Solid waste disposal

KNOWLEDGE CHECK! Filtration can improve the efficiency of many other water treatments

Discuss Results

SECTION 05

Water Storage and Bioremediation

POLL ALERT! I have downloaded an RII Best Practices Guide in the last year

• YES

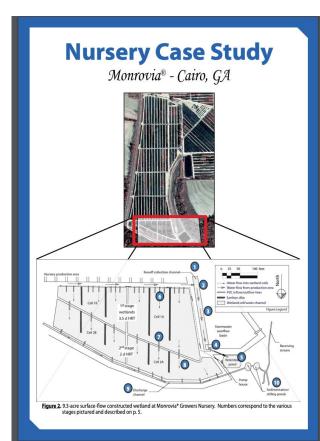
- NO
- NOT SURE

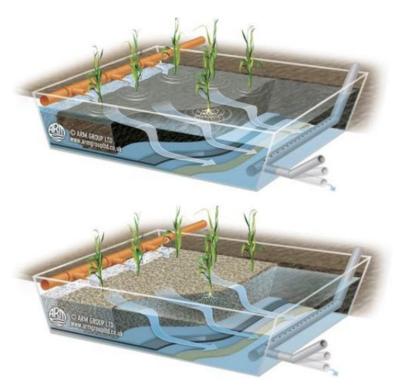
Storing Water for Reuse

- Clean drain water basin
- Day water storage basins
- Waste water basin
- Liquid fertilizer stock tanks
- Fertilizer dosing unit
- A & B stock tanks (in this example 3 sets which will allow for different feed recipes)
- Solid fertilizer storage area 10
- 11 Reverse osmosis unit

	Biological Water Quality Treatment Systems													
			Treatment Range								Costs			
Technology	Notes	Pre Treatment Required			N	utrients		Controls	Reaction Time	Residual Effect	Reject Water Waste?	Footprint		
			Solids / organic material	Pathogens	N	Р	Agri - chemicals	Biofilm					Capital	Operating
Slow Sand Filters			✓	√			Possible					Medium	\$\$	\$
Constructed Wetlands			√	Variable	~	Variable	~					Small - Large	\$\$-\$\$\$	\$
Floating Treatment Wetlands	Can be applied to existing stormwater ponds		✓	Variable	~	Variable	√					Small - Large	\$-\$\$	\$
Woodchip Bioreactors			√	✓	~	Some	Likely					Medium	\$-\$\$	\$
Hybrid Treatment Systems			V	V	~	~	Likely					Medium	\$\$-\$\$\$	\$

Biological Remediation Strategies - Constructed Wetlands


Bottom of wetland cells should be flat to permit even water drainage and flow for future wetland remediation efficiency.

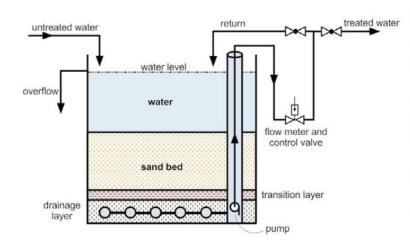

Soils in dike and bottom of cells must have small particle size and compact readily to restrict water penetration.

Biological Remediation Strategies - Constructed Wetlands

Figure 28. Surface flow constructed wetland (top and Sub-surface flow constructed wetland.

High removal efficiency:

50%-99% for nitrogen


25%-98% for phosphorus

- 84%-97% for pesticides (organochlorines, strobilurin/strobin, organophosphates, and pyrethroids)
- Heavy metals from plumbing and HVAC, copper (60%) and zinc (86%), along with lead, cadmium, aluminum, and manganese

Relative to the other water treatment technologies, these are *high removal rates* for these key agricultural pollutants.

Sources: White et al. (2011). Gill, L., Ring, P., Casey, B. M., Higgins, N. M., & Johnston, P. A. (2017). Cheng, S., Grosse, W., Karrenbrock, F., & Thoennessen, M. (2002).

Biological Remediation Strategies - Slow Sand Filters

Can be "containerized" for possible use in small spaces and even indoors-

201.

Oki,

Biological Remediation Strategies - Floating Wetlands

Figure 29. Constructed wetland root system (left) and top growth.

Can be retrofitted to existing holding ponds

In a study comparing removal rates of two leading brands' efficacy in treating agricultural wastewater, removal rates of 25%-40% for Total Nitrogen and 4%-48% for Total Phosphorus were achieved.

POLL ALERT! I have downloaded an RII Best Practices Guide in the last year

Discuss Results

Incentives Overview

Measure and Incentive Details **Deemed**

Measure	Measure Sizes	Incentive
Glycol Pump VFD	3hp – 25hp	\$1,500 - \$5,000 / unit
High-Low Bay LED Horticultural Lighting	4500 lumens – 65,900 lumens 130 LPW – 150+ LPW	\$30 - \$55 / unit
Efficient Ag Ventilation Fans	24 – 48 inch VSD	\$200 / unit \$195 / hp for VSD
Dust Collection Fan VSD	VFD on 10hp – 150hp motor	\$2,000 - \$15,000 / unit
VFD on Ag Well and Booster Pumps	<75 hp – 600hp	\$75 - \$200 / hp
Enhanced VFD on Ag Well and Booster Pumps	<75 hp – 600hp	\$150 / hp

Measure and Incentive Details Custom + NMEC*

Measure	Measure Examples	Incentive per kWh	Incentive per kW
Lighting	 Lighting controls Horticulture lighting Exterior LED lighting Interior high/low bay LED lighting 	\$0.15	\$150
HVAC	 Horticulture HVAC system improvement HVAC controls and VFDs HVAC retro-commissioning Chiller (HVAC) compressor – VFD Ventilation fan – VFD Efficient dehumidification system 		
Refrigeration	 Refrigeration system insulation Refrigeration system controls and VFDs Condenser fan – VFD Chiller (process) compressor – VFD Evaporator coil fan – VFD Efficient refrigeration condensing unit Oversized air-cooled condenser Efficient refrigeration compressors 		

Measure and Incentive Details Custom + NMEC*

Measure	Measure Examples	Incentive per kWh	Incentive per kW
Irrigation	 Sprinkler/flood to drip irrigation Distribution uniformity improvement Irrigation scheduling 	\$0.15	\$150
Compressed air	Compressed air controlsCompressed air system optimization		
Pumping	 Pump controls and VFDs Pumping system retro-commissioning Agricultural pumping system upgrades VFD on Ag well pump serving non-pressurized system (add-on equipment) VFD on Ag pump serving non-pressurized system Milk transfer pump – VFD Vacuum pumps – VFD Milking vacuum pumps - VFD 		
Wastewater	 Wastewater system controls and VFDs High efficiency blowers High efficiency pumps High efficiency aerators Wastewater treatment management system Wastewater chemically enhanced primary treatment/sedimentation 		

Deemed & DI Water Heating Requirements & Incentives

Customers who located within a Disadvantaged Community (DAC) as defined by CalEnviroscreen 4.0 will receive a higher incentive than customers who are not. Customers who are classified as Hard-to-Reach (HTR) will be offered measures at no-cost.

Measure	Requirements	Standard Deemed Rebate	Increased Rebate for DAC Customers	DI Cost to Customer (for HTR and DAC customers only)
Steam Traps	 >= 12 hours of average daily use Any pipe size 	\$150 each	\$300 each	Not eligible
Storage Water Heaters	 40 Gallon >= 0.64 UEF Input rating <= 75 kBtu/hr 	\$20 per rated MBtuh	\$27 per rated MBtuh	No Cost
Storage Water Heaters	 40 Gallon >= 0.68 UEF Input rating <= 75 kBtu/hr 	\$22 per rated MBtuh	\$29 per rated MBtuh	No Cost
Process Boiler	 >=90% CE Hot Water Must replace standard efficiency process boiler Input rating <=20,000 kBtu/hr 	\$6 per rated MBtuh	\$10 per rated MBtuh	Not eligible
Process Boiler	 >=85% CE Hot Water Must replace standard efficiency process boiler Input rating <=20,000 kBtu/hr 	\$2 per rated MBtuh	\$2.95 per rated MBtuh	Not eligible
Process Boiler	 >= 83% CE Steam Must replace standard efficiency process boiler Input rating <=20,000 kBtu/hr 	\$3 per rated MBtuh	\$4.35 per rated MBtuh	Not eligible

Deemed & DI Insulation Requirements & Incentives

Customers who located within a Disadvantaged Community (DAC) as defined by CalEnviroscreen 4.0 will receive a higher incentive than customers who are not. Customers who are classified as Hard-to-Reach (HTR) will be offered measures at no-cost.

Measure	Requirements	Standard Deemed Rebate	Increased Rebate for DAC Customers	DI Cost to Customer (for HTR and DAC customers only)
Tank Insulation	 1" temperature application 120–170 degrees F solution 	\$2.50/ square foot	\$4.00/ square foot	No Cost
Tank Insulation	 2" temperature application 170–200 degrees F solution 	\$3.25/ square foot	\$6.00/ square foot	No Cost
Fitting Insulation (no steam for DI)	 1" minimum insulation thickness <= 1 inch pipe <=15 and >15 PSIG Steam or Hot Water ½" minimum pipe diameter 	\$10.00-\$15.00/fitting	\$15.00-\$22.50/fitting	No Cost (Hot Water only)
Fitting Insulation (no steam for DI)	 1" minimum insulation thickness > 1 inch pipe <=15 and >15 PSIG Steam or Hot Water 	\$14.00-\$40.00/fitting	\$22.00-\$60.00/fitting	No Cost (Hot Water only)
Pipe Insulation (no steam for DI)	 One inch minimum insulation thickness <= 1" inch pipe, <=15 and >15 PSIG Steam, Hot Water, Indoor, and Outdoor - ½" minimum pipe diameter 1 inch - > 4 inch, <=15 and > 15 PSIG Steam, Hot Water, Indoor, and Outdoor 	\$2.50/ foot	\$4.00/ foot	No Cost (Hot Water only)

Deemed & DI Greenhouse Requirements & Incentives

Customers who located within a Disadvantaged Community (DAC) as defined by CalEnviroscreen 4.0 will receive a higher incentive than customers who are not. Customers who are classified as Hard-to-Reach (HTR) will be offered measures at no-cost.

Measure	Requirements	Standard Deemed Rebate	Increased Rebate for DAC Customers	DI Cost to Customer (for HTR and DAC customers only)
Greenhouse Heat Curtain – Existing or New Construction	 Natural gas savings rating >=40% Single layer interior curtain The heat curtain must have a warranty/product life of five years The installation must allow the curtain to be automatically or manually moved into place. 	\$0.35/ square foot floor area	\$0.50/ square foot floor area	No Cost
Greenhouse Infrared Film - Existing	 Must be infrared, anti-condensate, polyethylene plastic Minimum thickness of six thousandths of an inch Cannot be installed on greenhouse walls 	\$0.05/ square foot film area	\$0.10 / square foot film area	No Cost
Greenhouse Infrared Film – New Construction	 Must be infrared, anti-condensate, polyethylene plastic Minimum thickness of six thousandths of an inch Cannot be installed on greenhouse walls 	\$0.02/ square foot film area	\$0.02/ square foot film area	No Cost

Custom Measure Incentives

Measures	Standard Incentive (\$/Therm Savings)	DAC Incentive (\$/Therm Savings)
Boiler System Upgrades	\$2.50	\$3.00
Condensing Unit Heater	\$2.50	\$3.00
Direct Contact Water Heater	\$2.50	\$3.00
Greenhouse Environmental Controls	\$2.50	\$3.00
Greenhouse IR Space Heating	\$2.50	\$3.00
Greenhouse Under-Bench Heating	\$2.50	\$3.00
Heat Recovery, Dehumidification Air Reheat	\$2.50	\$3.00
Process Heat Recovery	\$2.50	\$3.00
Process Pump VFD	\$2.50	\$3.00
Combined Heat and Power	\$2.50	\$3.00
Infrared Heating for Post-Harvest	\$2.50	\$3.00
Greenhouse Envelope Upgrades	\$2.50	\$3.00
Ozone Cleaning and Laundry	\$2.50	\$3.00
Greenhouse Retro commissioning	\$1.25	\$1.25

Measure and Incentive Eligibility

Basic Requirements for All Measures

- Customers must meet general program eligibility requirements to apply for AgEE Program incentives
- All equipment must be new electric powered equipment
- Qualifying equipment must be purchased and installed between July 5, 2022, and December 31, 2025. The purchase date of the equipment must be within the calendar year that the application is submitted unless indicated otherwise.
- All required efficiencies must exceed Title 20 and 24 standards.

Training and education on broader participation benefits

- Energy savings
- Non-energy benefits (e.g., increased yield, worker safety, animal comfort, etc.)
- Building energy assessments
- Energy benchmarking
- · Technical support in selecting the most beneficial measures
- · Ongoing guidance regarding measure installation and usage
- Financing assistance through incentives and promotion of on-bill financing
- Provide customers with education on accessing grants such as those from the USDA
- Dedicated outreach for DAC and HTR customers

Program Delivery and Customer Services

Caleb Hayhoe AgEE Program Manager caleb.hayhoe@icf.com

Ben Cooper AgEE Program Manager benc@ensave.com

	in linkedin.com/company/icf-international/
	y twitter.com/icf
icf.com	f https://www.facebook.com/ThisIsICF/

Panel Q & A

Today's Experts

Jeff Martens

Rob Eddy

Rob@resourceinnovation.org

jmartens@newterra.com

newterra

H2O Engineering, Inc.

Carlos Salazar

carlos@bearag.com

Caleb Hayhoe

caleb.hayhoe@icf.com

CONTACT US

Visit us at www.ResourceInnovation.org

P.O. Box 5981 Portland, Oregon 97228 rob@resourceinnovation.org bryce@resourceinnovation.org

f У 🖸 in 🖻