

Indoor Agriculture Energy Savings Deep Dive #1: RETROFITS

November 5, 2020

Presented by:

In cooperation with:

UMassAmherst

Organized by:

Derek Smith Executive Director

Gretchen Schimelpfenig, PE Technical Director

Gretchen@ResourceInnovation.org

@RIInstitute

@resourceinnovation

Agenda

Welcome, introductions & purpose	1:00 pm
Cannabis production facility background	1:10 pm
Energy sources for cannabis cultivation operations	1:15 pm
Fuel mixes, typical energy use, electric demand, and energy costs	1:20 pm
Designing and optimizing for energy efficiency in retrofits	1:30 pm
Q&A	1:50 pm

We advance resource efficiency to cultivate a better cannabis future

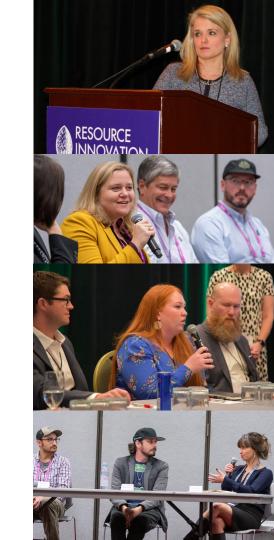
Energy | Water | Waste | Carbon Emissions

Objective | Non-profit | Data-driven

We bring stakeholders together to:

Measure and report resource efficiency

Benchmarks Baselines


Inform governments, utilities & industry

Best practices & standards Policies Programs

Validate cultivation approaches

Technologies Techniques

Trusted by Programs, Cultivators, Supply Chain, & Governments

Technical Advisory Council

Multi-disciplinary body facilitated by RII to aggregate knowledge and data to support cultivators, governments, utilities, standards bodies and other stakeholders with objective, peer-reviewed information on cultivation resource use and quantification of performance

- 1. Provides guidance on development of standards
- 2. Shapes tools and resources to support best practices
- 3. Informs advocacy on policies, incentives and regulations

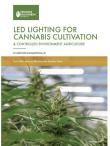
Technical Advisory Council Working Groups

2019 Q1 2020 Q2 - Q4 2020

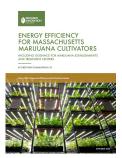
Lighting Utility Water

> **HVAC** Massachusetts

> > Policy


Data

Controls



CANNABIS **ENERGY**

2021

Design & Construction

Carbon Emissions

Best Practices Guides

- 60+ contributors & peer reviewers, including cultivators, architects, engineers, manufacturers
- Defines key terms
- Recommends KPIs
- Meets all growers where they are
- State-specific guidance for Massachusetts

Support for utilities and implementers

Educational curriculum Cultivators, utility staff, trade allies

- **Utility Working Group**
- **Best practices guidance** Peer-reviewed, brand-agnostic
- **Grower outreach** Marketing toolkit
- **Project planning & verification platform** M&V guidelines PowerScore for portfolios

PROGRAM DESIGN & MARKET ENAGEMENT PRIMER

for Energy Efficiency Utilities & Implementers Serving Cannabis Cultivators

BY GRETCHEN SCHIMELPFENIG, PE

Benchmark operational efficiency with

Competitive

• **KPIs** benchmark facility resource efficiency:

Energy: kBtu/sq ft grams / kBtu

Water: gallons / sq ft grams /gallon

 Ranks competitive position relative to other facilities

57th

percentile

Trusted

- Used by 300+ cultivators & facilities
- Metrics peer-reviewed by Technical Advisory Council
- Specified by governments including Massachusetts

Confidential

- Maintained by a non-profit
- Confidential survey
- Protected individual farm data
- Free to cultivators

PowerScore Performance Benchmarks


KPIs

Learning Objectives

You will leave today understanding:

- Typical HVAC and lighting loads for cultivation facilities
- Energy use and demand of cannabis operations
- Challenges cultivators face with retrofitting existing buildings
- Designing and optimizing cannabis cultivation processes for efficient operations
- Cost-effective opportunities for retrofitting to high-performance building systems and equipment
- Options for savings methodologies for lighting, HVAC, and dehumidification retrofit projects

If you are a supply chain professional working with cultivators...

Partner with Mass Save program administrators for cannabis client projects

Gary Lane

Gary.Lane@Ulnet.com

Margaret Song

MSong@CapeLightCompact.org

f Cape Light Compact JPE

Lisa Zagura

LZagura@NiSource.com

Brendan Giza-Sisson

David.Giza-Sisson@Eversource.com

Shane Heneghen

Shane.Heneghen@LibertyUtilities.com

Keith Miller

Keith.Miller2@NationalGrid.com

Brad Hunter

HunterB@Unitil.com

Our Speakers

M Dario Boyce

Project Manager Anderson Porter Design

M <u>Doug Oppedal</u>

Program Manager & Senior Lighting Specialist Evergreen Consulting Group

What are the typical processes occurring in indoor cannabis production facilities?

Why Cultivate Indoors if Energy Costs are Higher?

- Some commercial grows began as scaled up black market operations
 - Old school "indoor is safer" mentality
- Legalization regulations in some areas require indoor cultivation
 - Obscure plants from view
 - Control and manage odors
- Offer increased quality for craft cannabis
 - Avoid crop damage from weather and pests
- Can effectively control their environments
 - Tailor light spectrum and light intensity for cultivars
 - Optimize temperature and humidity to minimize mold and disease
 - Lengthen growing season and increase harvest cycles

Activities and Products in Cannabis Cultivation Facilities

- Cultivation
 - Propagation / Nursery
 - Cloning
 - Mothering
 - Vegetation
 - Flowering

Cutting: 14 days Stage 1 Veg: 10-14 days Stage 2 Veg: 7-14 days

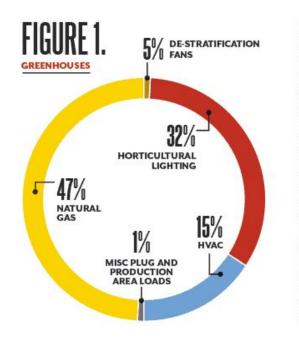
Flower: 63 days

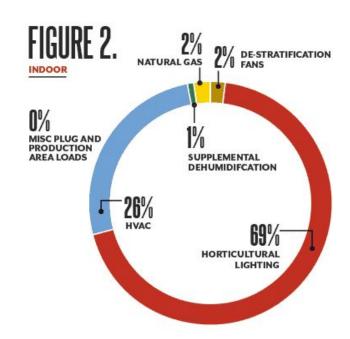
Dry: 14 days

Cure, Store and Sale

Activities and Products in Cannabis Cultivation Facilities

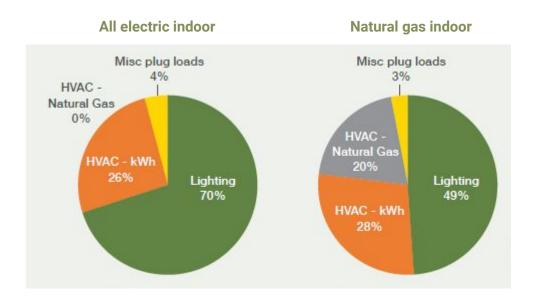
- Cultivation
 - Propagation / Nursery
 - Cloning
 - Mothering
 - Vegetation
 - Flowering


- Drying/Curing ---> Smokeable product
- Processing ---> Oils / extracts
- Manufacturing of products ---> Pills, topicals, tinctures, etc.



What are the energy sources and fuel mixes of cannabis operations?

Primary Energy Sources in Grow Environments



Source: ERS & RII, <u>The Carbon Emission Impacts of Greenhouse Cultivation</u>, Cannabis Business Times Source for data: Boulder County, Colorado Cannabis Cultivator Energy Efficiency Assessments performed by ERS

Primary Energy Sources in Indoor Facilities in Massachusetts

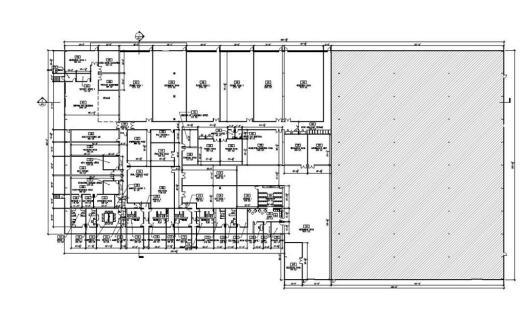
What do cannabis production operations look like and what are their HVAC & lighting loads?

Michigan Example

Cultivation and Manufacturing Facility in MI

61,000 GSF/ 16,400 CSF in Flower (2-tier) (950)x 645W LED lights 37.36 W/CSF (aka HLPD)

Dry Bulb & RH


Day: 75 F +/- 3 F @ 50%RH +/-5% Night: 70 F +/- 3 F @ 40%RH +/- 5% Chilled Water / 4-pipe to Modular AHUs

Ventilation: **+500CFM**, MERV 11, HEPA

Cooling Load: 340 Tons

Electrical Load: 2,700 Amps 480V 3-phase

Calculating Amperage for LED Lighting Systems

MA Tier 3 Facility Example

	Canopy Square Footage	Number of Fixtures	Wattage per Fixture	Hours per Day ON
Flower	10800	616	630	12
Veg	1485	100	275	18
Clone	400	50	112	24
Mom	180	12	200	18
Totals	12865	sq. ft.	424	kW, Peak
			5,330	kWh, per day

Amperage Required from Utility for Lighting				
Power Factor	0.95	unitless		
Peak Power Demand	424	kW		
		V, 3 phase, line to line		
Power Type	480	to line		
Peak Amperage Demand	536	А		

This is for hort lighting only!!

How much energy does an indoor cannabis cultivation operation consume?

Electricity Consumption of Indoor Cannabis Operations

Cultivation facilities range widely in their energy consumption depending on their size:

 Some small operations with flowering canopy areas smaller than 5,000 square feet may use as little as 60,000 kWh, but can also consume over 2,000,000 kWh a year.

Electricity Consumption of Indoor Cannabis Operations

- Some medium-sized facilities with flowering canopy areas from 5,000 - 10,000 square feet can use between 2 million and 3 million kWh a year.
- Larger facilities with flowering canopy areas larger than 10,000 square feet can use between 2 million and 6 million kWh a year.

Whole-Building Performance of Indoor Cannabis Operations

- Average Facility Efficiency is 2,390 kBtu/sq ft when both electricity and natural gas are included. Massachusetts indoor facilities in <u>Cannabis</u>
 <u>PowerScore</u> have an average flowering canopy area of 6,150 square feet and produce an average of 355,500 grams of dry cannabis flower per year.
- Average energy usage of the Massachusetts operations is 2,700,000 kWh of electricity per year and 21,300 therms of natural gas per year.
- Utility costs for electricity and gas can exceed \$100,000/month for a large facility with >10,000 sq ft of flowering canopy
- Average Horticultural LPD as measured by the CCC (HLPD_{MA}) of these indoor Massachusetts operations is 43.5 W/sq ft; Average Lighting Efficiency is 5,530 kWh/day.
- Average water usage is 483,000 gallons per year.

Electric Demand of Indoor Cannabis Cultivation Operations

- Craft operations with flowering canopy areas smaller than 2,000 square feet may have monthly peak demands ranging from 10 - 120 kW
- Small medium-sized facilities with flowering canopy areas from 4,000 - 10,000 square feet may have monthly peak demands ranging from 165 - 500 kW
- Larger facilities with flowering canopy areas larger than 10,000 square feet may have monthly peak demands ranging from 1,100 - 1,400 kW

Peak demand charges can range from \$2,000 - \$10,000/month

What kind of retrofits happen in cannabis production facilities?

Retrofits: Two Definitions

- Retrofit: renovation and refurbishment of existing buildings to change building use type (and maybe upgrade energy performance)
- Retrofit: installation of new or modified equipment in an existing system or building to upgrade to more efficient technology
- Projects in cannabis production facilities may be one or the other, or both at the same time:
 - A cannabis business retrofits a warehouse building for cultivation and processing activities, and performs a technology retrofit to upgrade systems to meet new loads and reduce operating expenses

Non-Energy Benefits of Retrofits to Existing Equipment

- LED lighting can provide better quality of light and more choices of spectrum to influence plant expression and product differentiation
- Lighting controls offer ability to gradually increase light intensity as plants grow and implement sequences such as sunrise/sunset
- High performance HVACD systems can better meet and maintain target environmental conditions, enhancing plant productivity
- Saving energy with high performance equipment leaves power available to expand canopy and product without buying more real estate

- Lower maintenance costs and associated labor hours
- Can grow cradle to grave on one shelf which reduces labor costs

Greatest Opportunities for Energy Savings

- LED horticultural lighting with lighting controls
- Efficient cooling
- Efficient dehumidification
- Efficient central plant
- VFDs for pumps and fans
- Smart airflow control strategies
- Automated HVACD controls
- Integrated HVACD and lighting systems
- Efficient industrial processes

What scale of energy savings and incentives are possible in these facilities?

Mass Save Customer Example #1

- Massachusetts example
- ~ 15,000 sq. ft. flowering canopy
 - Energy efficiency measures:
 - Heat pipe
 - Efficient chiller
 - Condensing boilers
 - Airflow set backs
 - Potential yearly fuel savings for efficient system
 - Electric 845,000 kWh
 - Gas 94,800 therms

Mass Save Customer Example #2

ECM	Description of Energy Conservation Measure (ECM)	Annual Utility Bill Savings			Max Peak Demand	Incremental Cost	Payback Period
#		Electric kWh	Gas therms	Cost Savings \$	Reduction kW	\$	Years
1	LED Grow Lights	382,642	7,358	\$57,028	82.6	\$206,375	3.6
2	Exhaust Fans with EC Motors	1,251		\$163	0.5	\$1,350	8.3
3	Gas-Driven Chiller with Heat Recovery	286,674	-18,199	\$19,251	49.3	\$97,240	5.1
4	Condensing Boilers		1,565	\$1,549		\$20,018	12.9
5	VFDs on HWS & CW Pumps	16,114		\$2,095	2.7	\$7,093	3.4

686,681 kWh 135 kW

Michigan HVAC Examples

Michigan #1

- Energy efficiency measures:
 - o (2) 21,500 MBH 92% efficient condensing boilers
- Potential yearly fuel savings for efficient system
 - Gas 7,961 MCF
- Cost savings per year
 - \$39,805
- Project cost / incremental cost
 - \$621,500 / \$186,450
- Simple payback of incremental cost
 - o 3.7 years

Michigan HVAC Examples

Michigan #2

- Energy efficiency measures:
 - (2) 310 ton water-cooled chillers
- Potential yearly fuel savings for efficient system
 - Electric 509,103 kWh
- Cost savings per year
 - \$50,910
- Project cost / incremental cost
 - \$581,411 / \$254,200
- Simple payback of incremental cost
 - 4 years

Michigan Examples

Michigan #3

- Energy efficiency measures:
 - o (6) 1 4 ton heat pumps, (4) 210 320 PPD dehumidifiers
- Potential yearly fuel savings for efficient system
 - Electric 36,190 kWh
- Cost savings per year
 - \$3,619
- Project cost / incremental cost
 - \$37,520 / \$18,235
- Simple payback of incremental cost
 - 4 years

Washington Example

- Washington #1
- ~ 2,000 sq. ft. flowering canopy
 - Energy efficiency measures:
 - Liquid-cooled LED lighting; efficient central plant
 - Potential yearly fuel savings for efficient system
 - Electric 328,300 kWh (230,400 kWh from HVAC)
 - Project cost
 - \$255,350
 - Utility incentive
 - \$139,675\$0.43/kWh

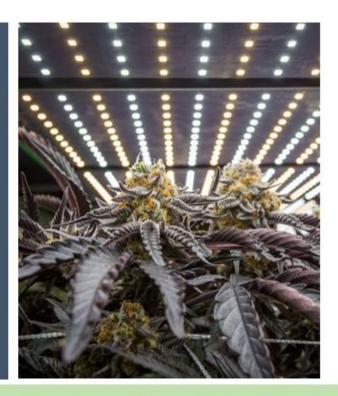
Deschutes Growery

- Full-spectrum LEDs in the flower stage
- Blue spectrum for vegetative and cloning stages
- Dimmers to ramp up light as plants grow

"Deschutes Growery was also among the first of our customers to use new LED technology."

Doug Oppedal, Evergreen Consulting

Deschutes Growery


- LED lighting in flower, vegetative and clone rooms
- \$928,330 project costs
- \$386,040 in cash incentives from Energy Trust
- \$192,000 in annual energy costs savings
- 2.5 million annual kWh savings
- 1,361 tons annual carbon dioxide savings

"Energy Trust is very forward thinking. Its cash incentives helped soften the huge infrastructure cost of installing LEDs."

Deschutes Growery

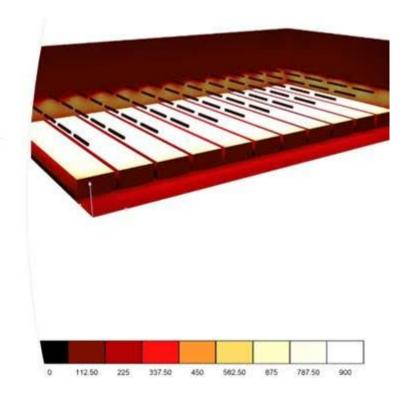
- LED lighting in flower, vegetative and clone rooms
- \$928,330 project costs
- \$386,040 in cash incentives from Energy Trust
- \$192,000 in annual energy costs savings
- 2.5 million annual kWh savings
- 1,361 tons annual carbon dioxide savings

This was a new project in 2017 using an HPS HID load the virtual baseline. At the time and still today this is one of the most advanced LED projects in Oregon.

- 3,500 SF flower room has 218, 1000-watt HPS grow lights
- Annual hours of operation are 4,380 (12/7)
- Replace with 600 watt LED

- LED lighting cost \$ 218,000
- Local utility incentive \$ 64,000 (15 cents/kWh)
- 429,000 estimated annual kWh savings \$ 47,739 (10 cents/kWh)
- Annual cooling load savings (20% of ltg kWh savings) \$ 9,548
- Simple payback 2.7 years
 - Baseline lighting maintenance cost savings (HID re-lamp)
 \$13,800 x 2.5 yr. = \$34,500

Oregon Example #1: Beating MA HLPD Requirements


- This example would just meet the 36 watts per SF requirement in MA
- Using a current advanced LED product that consumes 520 watts and provides the same or higher light levels, this example would re-calculate at 32 W/sq ft
- Higher PPE grow lights with proper distribution will require less lights, lowering LPD
- Using higher PPE and more efficient LED light fixtures (450 W) this example would re-calculate at 28 W/sq ft
- Lighting controls that automatically trim the light level at veg and slowly increase as plants grow will save additional kWh

Oregon Example #1: Beating MA HLPD Requirements

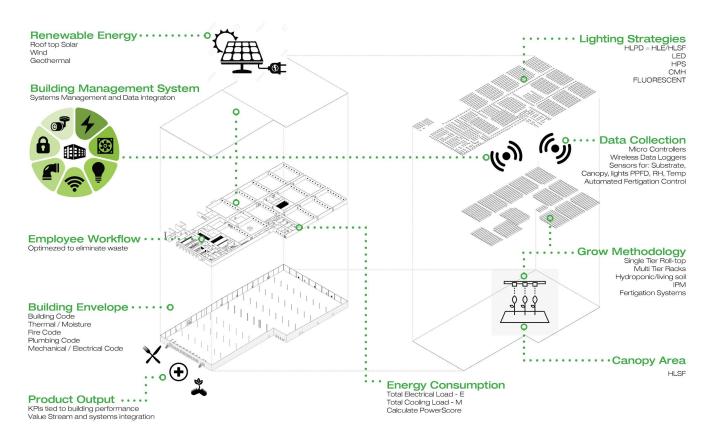
36/50 watts per sf requirements

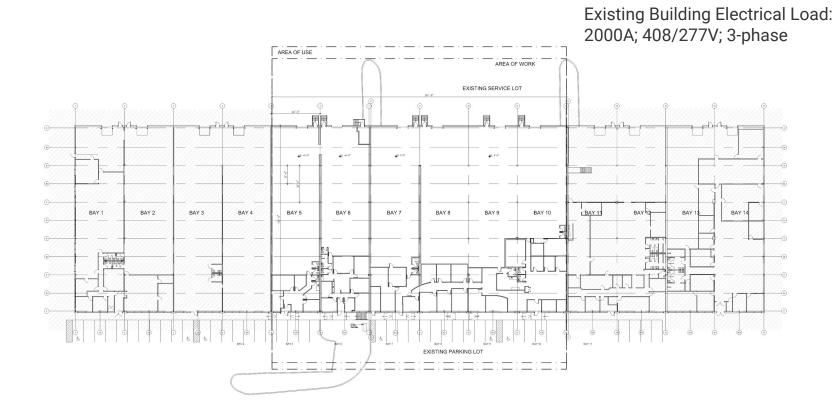
- . 1,500 sf flower room
- 1,056 sf canopy
- · 60, 630-watt LED grow lights
- 900 PPFD
- · 35 watts per canopy sf
- · 25 watts per room sf

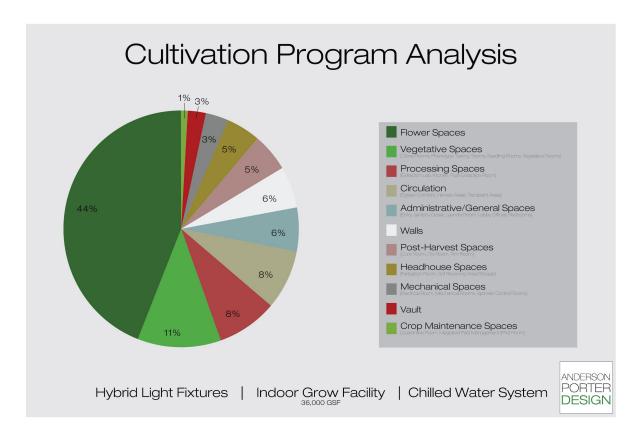
Oregon Example #1: Beating MA HLPD Requirements

36/50 watts per sf requirements

- · 750 sf veg room
- · 480 sf canopy
- · 20, 630-watt LED grow lights
- 675 PPFD
- · 26 watts per canopy sf
- · 17 watts per room

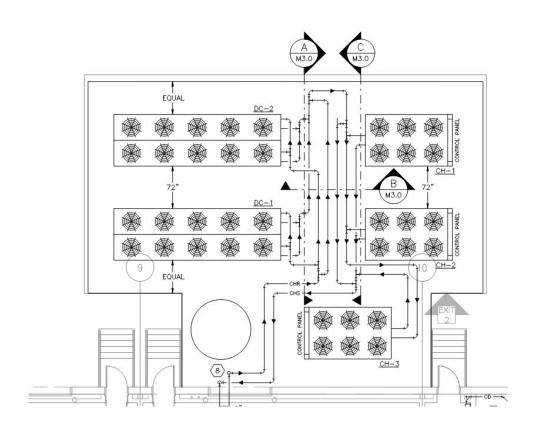



How can project partners guide cannabis cultivators through infrastructure considerations?



Integrated Design Philosophy

Electrical Load: 4000A; 277/480; 3-phase (2000A needed for cultivation)

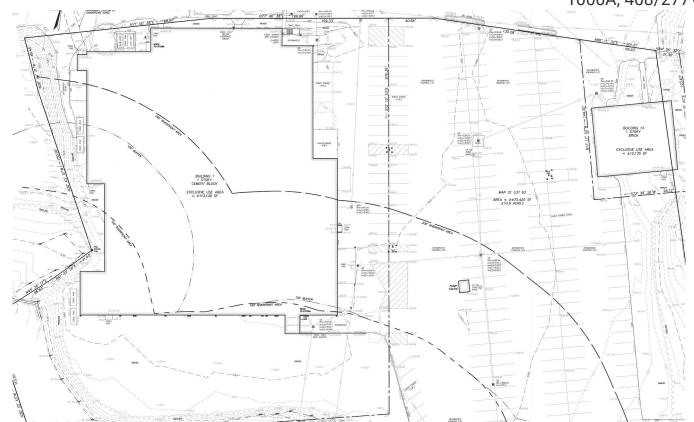

New 165kVA transformer needed

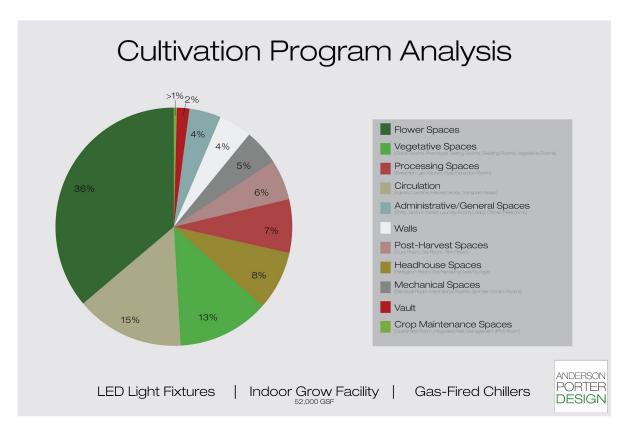
Canopy SF: 13,081 CSF

HPS Light Fixtures: 1000W (Flower): 590

CMH Light Fixtures: 450W (Veg): 100 350W (Mother & Veg): 48

LED Light Fixtures: 350W (Veg): 56 250W (Veg): 72

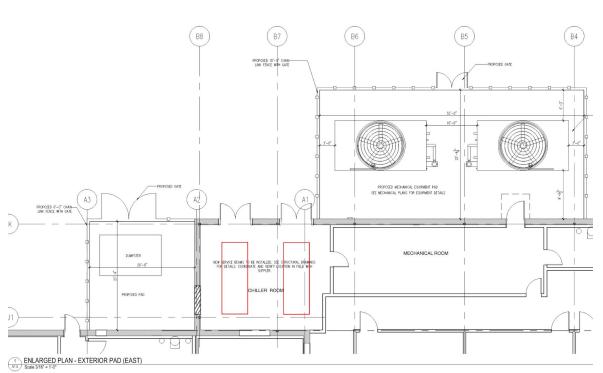



Chilled Water System:

3 air-cooled chillers 90 tons capacity each

2 dry coolers

Existing Building Electrical Load: 1000A; 408/277V; 3-phase


Electrical Load: 2500A; 277/480;

3-phase

New 450kVA transformer needed

Canopy SF: 16,514 CSF

LED Light Fixtures: 1,268

Chilled Water System:

2 Tecogen chillers200 tons capacity each

2 Evapco cooling towers

Next Steps

Your Assignment

- Provide feedback via <u>SurveyMonkey</u>
- Attend November 12 workshop on HVACD & Energy Recovery

RII Follow-up

Gretchen will:

- Send recording, slide deck and links to shared files from today's workshop
- Provide links to RII resources
- Share information about panelists and their organizations

THANK YOU

UMass Amherst

Presented by:

Gretchen Schimelpfenig, PE Technical Director

Gretchen@ResourceInnovation.org

@RIInstitute

@resourceinnovation

Indoor Agriculture
Energy Savings Deep
Dive #2:
ENERGY RECOVERY

Thursday, November 12

Presented by:

RESOURCE INNOVATION

In cooperation with:

UMassAmherst

Organized by:

