

Indoor Agriculture Energy Savings Deep Dive #4: DEMAND MANAGEMENT

December 3, 2020

Presented by:

In cooperation with:

UMassAmherst

Organized by:

Agenda

Welcome, introductions & purpose	1:00 pm
Scale of opportunity for demand reductions	1:10 pm
Typical demand costs and loadshapes	1:20 pm
How low can you grow?	1:25 pm
Demand response approaches for new & existing buildings	1:40 pm

Derek Smith Executive Director

Gretchen Schimelpfenig, PE Technical Director

Gretchen@ResourceInnovation.org

@RIInstitute

@resourceinnovation

We advance resource efficiency to cultivate a better cannabis future

Energy | Water | Waste | Carbon Emissions

Objective | Non-profit | Data-driven

Strategic Direction

Extension of services to CEA

USDA (NRCS-CIG) funding Market characterization Resource benchmarking Best practices

Additional energy measures

Automation & Controls Design & Construction

Water recirculation

Best practices

We bring stakeholders together to:

Measure and report resource efficiency

Benchmarks Baselines


Inform governments, utilities & industry

Best practices & standards Policies Programs

Validate cultivation approaches

Technologies Techniques

Trusted by Programs, Cultivators, Supply Chain, & Governments

Technical Advisory Council

Multi-disciplinary body facilitated by RII to aggregate knowledge and data to support cultivators, governments, utilities, standards bodies and other stakeholders with objective, peer-reviewed information on cultivation resource use and quantification of performance

- 1. Provides guidance on development of standards
- 2. Shapes tools and resources to support best practices
- 3. Informs advocacy on policies, incentives and regulations

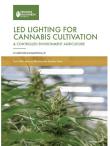
Technical Advisory Council Working Groups

2019 Q1 2020 Q2 - Q4 2020

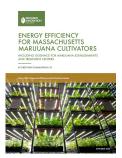
Lighting Utility Water

> **HVAC** Massachusetts

> > Policy


Data

Controls



CANNABIS **ENERGY**

2021

Design & Construction

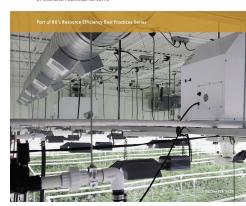
Carbon Emissions

Best Practices Guides

- 60+ contributors & peer reviewers, including cultivators, architects, engineers, manufacturers
- Defines key terms
- Recommends KPIs
- Meets all growers where they are
- State-specific guidance for Massachusetts

Support for utilities and implementers

Educational curriculum Cultivators, utility staff, trade allies


- **Utility Working Group**
- **Best practices guidance** Peer-reviewed, brand-agnostic
- **Grower outreach** Marketing toolkit
- **Project planning & verification platform** M&V guidelines PowerScore for portfolios

PROGRAM DESIGN & MARKET

RGY EFFICIENCY UTILITIES & PROGRAM IMPLEMENTERS

Benchmark operational efficiency with

Competitive

• **KPIs** benchmark facility resource efficiency:

Energy: kBtu/sq ft grams / kBtu

Water: gallons / sq ft grams /gallon

 Ranks competitive position relative to other facilities

57th

percentile

Trusted

- Used by 300+ cultivators & facilities
- Metrics peer-reviewed by Technical Advisory Council
- Specified by governments including Massachusetts

Confidential

- Maintained by a non-profit
- Confidential survey
- Protected individual farm data
- Free to cultivators

PowerScore Performance Benchmarks

KPIs

If you are a supply chain professional working with cultivators...

Partner with Mass Save program administrators for cannabis client projects

Gary Lane

Gary.Lane@Ulnet.com

Margaret Song

MSong@CapeLightCompact.org

f Cape Light Compact JPE

Lisa Zagura

LZagura@NiSource.com

Brendan Giza-Sisson

David.Giza-Sisson@Eversource.com

Shane Heneghen

Shane.Heneghen@LibertyUtilities.com

Keith Miller

Keith.Miller2@NationalGrid.com

Brad Hunter

HunterB@Unitil.com

Our Speakers

M Nick Collins

Regional Director Energy & Resource Solutions

M Lauren Gaikowski

Energy Advisor Franklin Energy

Why is demand management a good fit for cultivation operations?

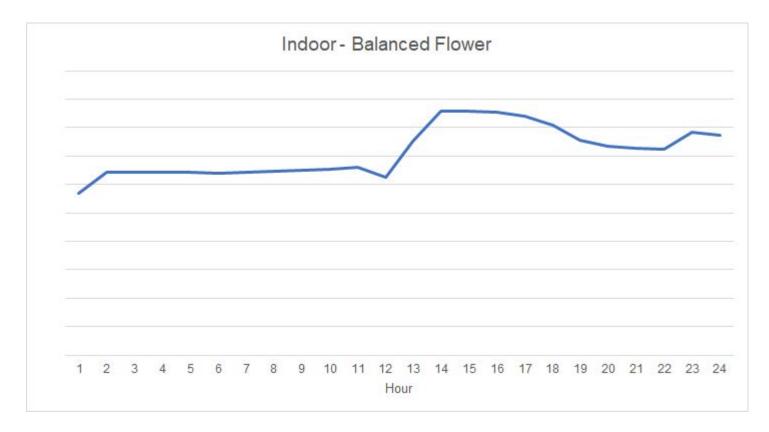
Energy Profiles of Massachusetts Indoor Cannabis Operations

- Massachusetts indoor facilities in <u>Cannabis PowerScore</u> have an average flowering canopy area of 6,150 square feet and produce an average of 355,500 grams of dry cannabis flower per year.
- Average energy usage of the Massachusetts operations is 2,700,000 kWh of electricity per year and 21,300 therms of natural gas per year.
- Utility costs for electricity and gas can exceed \$100,000/month for a large facility with >10,000 sq ft of flowering canopy
 - Peak demand charges can range from \$2,000 \$10,000/month depending on size of facility and flowering canopy area

Electric Demand of Indoor Cannabis Cultivation Operations

- Craft operations with flowering canopy areas smaller than 2,000 square feet may have monthly peak demands ranging from 10 - 120 kW
- Small medium-sized facilities with flowering canopy areas
 from 4,000 10,000 square feet may have monthly peak demands ranging
 from 165 500 kW
- Larger facilities with flowering canopy areas larger than 10,000 square feet may have monthly peak demands ranging from 1,100 - 1,400 kW

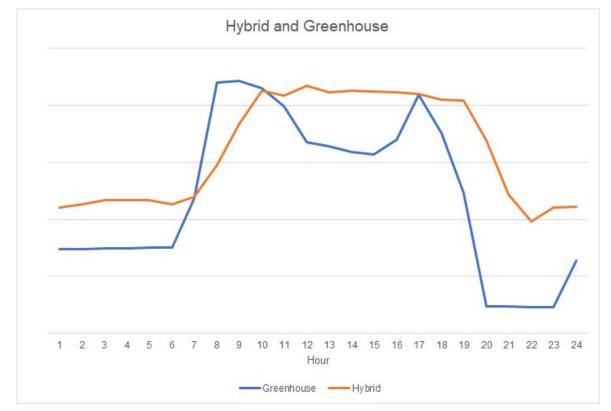
What are the typical loadshapes of indoor and mixed light facilities?



Typical Loadshapes of Indoor Cultivation Operations

Typical Loadshapes of Indoor Cultivation Operations

Typical Loadshapes of Indoor Cultivation Operations



Typical Loadshapes of Mixed Light Cultivation Operations

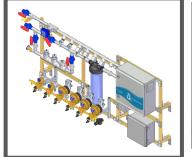
Typical Loadshapes of Mixed Light Cultivation Operations

How can growers feasibly lower demand and avoid impacting productivity?

Producers' Control Systems

Size of Facility

Tier 0 Tier 1 Tier 2 Tier 3+


Basic room control, hand mixed nutrients, other systems ad-hoc and not connected Room by room control, some automation, centralization achieved manually by operator

Fully centralized and automated

How Low Can You Grow? - Lighting & Controls

- LED lighting with controls and high PPE
 - Most MA cultivators are complying via DLC-listed lights now that there is a DLC compliance pathway
 - PPE route is becoming the more popular route over W/sq ft
- Balanced grow room lighting schedules
- Dimming
 - Most, but not all, DLC QPL products are dimmable

Photoacclimation sequences of control

Flower Room Shifting Example

How Low Can You Grow? - HVAC & Processes

- Efficient equipment
 - Right-sized HVACD systems
 - Efficient process equipment
- Controls infrastructure
 - Identify loads to reduce, monitor, and verify
- Controls sequences of operation
 - Efficient target environmental conditions
 - Efficient operation of lighting and HVACD systems
 - ASHRAE Guideline 36 in non-cultivation areas

Demand Savings Methodologies

- LED lighting & interactive effects
 - Waste Heat for Demand
 - Actual HVACD equipment efficiency

General Information		Proposed Information					Energy Savings		
Grow Room Type	Hours of Operation/Day	Fixture Model Number	Fixture PPF	Fixture PPE	Fixture Wattage	Quantity	Electric Savings (kWh)	Demand Savings (kW)	Peak Demand Savings (kW)
Flower	12	LED ABC	1600	2.68	597.0	200	247,894	59.5	45.2
							247,894	59.5	45.2

Mass Save Customer Example

Mass save
Savings through energy efficiency

- 46,000 square foot building in Plymouth
- Structure built in 1969 and retrofitted in 2017
- Indoor cannabis cultivation operation uses
 25,000 square feet of the space
- Six grow rooms
- 6,440 square feet of flowering canopy
- Two to three tiers of vertical racking
- Air handling units (AHUs) without economizer

Mass Save Customer Example

- Air handling units (AHUs); one AHU serves each grow room
- Separate units used for drying and trimming areas
- AHUs are connected to a central heating and cooling plant served by two 800 MBH condensing boilers and a high performance 200-ton natural-gas-driven chiller with heat recovery
- Building automation system to monitor operations and control air handling units, rooftop units, chilled water, boiler, pumps, fans, and CO2 systems

Mass Save Customer Example

ECM	Description of Energy Conservation Measure	Annua	al Utility Bill	Savings	Max Peak Demand Reduction kW	Incremental Cost \$	Payback Period Years
#	(ECM)	Electric kWh	Gas therms	Cost Savings \$			
1	LED Grow Lights	382,642	7,358	\$57,028	82.6	\$206,375	3.6
2	Exhaust Fans with EC Motors	1,251		\$163	0.5	\$1,350	8.3
3	Gas-Driven Chiller with Heat Recovery	286,674	-18,199	\$19,251	49.3	\$97,240	5.1
4	Condensing Boilers		1,565	\$1,549		\$20,018	12.9
5	VFDs on HWS & CW Pumps	16,114		\$2,095	2.7	\$7,093	3.4

Are cultivation facilities feasible to participate in flexible demand management programs?

Load Flattening vs Load Shifting

- Load flattening can be feasible for growers
- Load flattening strategies like using energy efficient equipment and reducing coincident peak loads are reasonable for growers to incorporate into their business plans and Standard Operating Procedures
- Controls systems are crucial to achieve the greatest energy and demand savings

Flexible Demand Management Approaches for Cannabis

- If growers are asked to increase temperature setpoints or decrease light levels in cultivation areas, it will not be as reasonable of a request as asking for non-cultivation areas to have setpoints adjusted
 - Not great candidates for demand response
- Direct control of lighting or cooling equipment in facilities via building automation systems for demand response events are not feasible for most growers
 - Not good candidates for automated demand response
- Some operators may be convinced to load shift with attractive economics

Load Shifting for Cultivation Facilities

- Load shifting can be less attractive depending on how often and for how long growers are being asked to shift the load
- Feasible load shifting opportunities:
 - Lighting flowering rooms during off-peak hours (requires multiple labor shifts)
 - Balancing flowering rooms (half the rooms are off when other rooms are on)
 - Temperature setbacks in non-cultivation areas
 - Lighting controls in non-cultivation areas

How can growers participate in demand response programs?

Demand Response for Growers

- Whole-building mechanical and lighting system view
 - Critical areas and stages of response
 - Opportunities for non-cultivation areas (GL 36)
- Mission critical growing, but no penalty for not participating
- Make the economics of DR make sense for the grower
- Automated demand response is not appropriate

Demand Response Light Curtailment Example

(500) 640-watt LED fixtures

Dim lights to 50% output in summer for up to (8) events 2 - 3 hours in duration

Roughly 160 kW reduction

Average demand reduction

= \$5,600 for the summer season at \$35/kW

= \$4,000 for the winter at \$25/kW

= \$9,600 per year

Dim to 50% for up to 39 hours annually (0.4% of the year) of on-call dimming

Next Steps

Your Assignment

Provide feedback via <u>SurveyMonkey</u>

RII Follow-up

Gretchen will:

- Send recording, slide deck and links to shared files from today's workshop and links to the recordings for prior three workshops
- Provide links to RII resources
- Share information about panelists and their organizations

THANK YOU

UMass Amherst

Presented by:

Gretchen Schimelpfenig, PE Technical Director

Gretchen@ResourceInnovation.org

@RIInstitute

@resourceinnovation

