

Greenhouse Optimization - Aligning Your Systems with Your Surroundings

In partnership with

March 29, 2022

Agenda

Introduction & Purpose	1:00 pm ET	
How CEA Crops Use Air and Moisture	1:10 pm	Thank you
Benefits of High-Performance Systems for Greenhouses	1:20 pm	
Greenhouse Supplemental Lighting Systems	1:35 pm	MICIA
Greenhouse HVAC Systems	1:45 pm	MICHIGAN CANNABIS INDUSTRY ASSOCIATION
Optimizing HVAC System Design	1:55 pm	MEECA
Controls & Automation in Greenhouse Cultivation	2:05 pm	MICHIGAN ENERGY EFFICIENCY CONTRACTORS ASSOCIATION
Commissioning Greenhouse Systems	2:20 pm	for your
Benchmarking for CEA Greenhouses	2:25 pm	collaboration
Greenhouse Efficiency Incentive Programs	2:35 pm	
Q&A	2:45 pm	

About RII

Objective, data-driven non-profit

Founded 2016 in Portland, Oregon

Expertise in climate policy, utility programs, green building certification, sustainable business, construction & indoor cultivation

In 2020, received 3-year grant from USDA to develop KPIs, standards & building rating system for CEA

What We Do / Our Mission

We measure, verify & celebrate the world's most efficient agricultural ideas.

Efficiency & Productivity

- Key Performance Indicators
- Benchmarks
- Baselines

Verify

Best Practices & Standards

- Training
- Policies
- Utility Programs

Leadership Recognition

- Verification
- Case Studies
- Certification

Our Network

EDUCATION and advocacy about best practices for growers

RII Technical Advisory Council

Multi-disciplinary body who aggregates knowledge to support producers and other stakeholders with objective and peer-reviewed data and curriculum on benchmarking resource efficiency

- Guides development of standards
- Shapes tools and resources to support best practices
- Advocates for informed policies, incentives and regulations

HVAC - Lighting - Utility - Water Policy - Data - Controls - Emissions Facility Design & Construction

Peer-Reviewed Publications

Today's Speakers

Gretchen Schimelpfenig

Dr. Dengke Cai

Luis Trujillo

Rob Hanifin 回Svensson

Get in Touch with Our Sponsors

rachel.fredrickson@cmsenergy.com tom.gallagher@cmsenergy.com ConsumersEnergyBusinessSolutions@cms energy.com

Phone: 877-607-0737

consumersenergy.com/startsaving
Online Application:
webtools.dnvgl.com/OnlineApplication/ce

<u>DTESaveEnergy@dnv.com</u> mailto:jeff.linkimer@dnv.com

Phone: 866-796-0512 (press option 3) Fax: 313-664-1950

dtebizrebates.com
Online Application:
dteonlineapplication.com

Patrick.Walters@lbwl.com jpetersen@slipstreaminc.org ebyrge@slipstreaminc.org

Phone: 608-210-7161

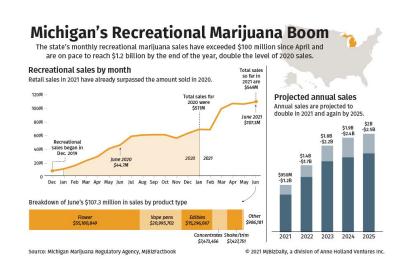
<u>lbwl.com/custo-mers/save-mon</u> <u>ey-energy/indoor-agriculture-p</u> <u>rogram</u>

Online Application:
lbwl.com/sites/default/files/inline-files/bwl-indoor-agriculture
-app.pdf

Michigan Efficiency Programs

Michigan organizations improving energy efficiency in the region with free programs:

- Efficiency programs offer:
 - Technical assistance
 - Energy modeling
 - Financial incentives for efficient technology


- Michigan Saves offers:
 - Financing for energy efficiency projects

Michigan CEA Landscape

Controlled Environment Agriculture (CEA) Crop Categories

- Indoor and greenhouse cultivation)
- Cannabis
 - 906 licenses for 308 companies
 - \$511M in sales in 2020
 - Flower, vape, edibles, concentrates, shake/trim, topicals, tinctures)
- Between 2012 and 2017:
- Floriculture
 - Cut flower operations doubled
- Vegetables
 - Tomato greenhouses increased 53%
- Fungi
- Mushroom operations increase >400%

Purpose of Today's Workshop

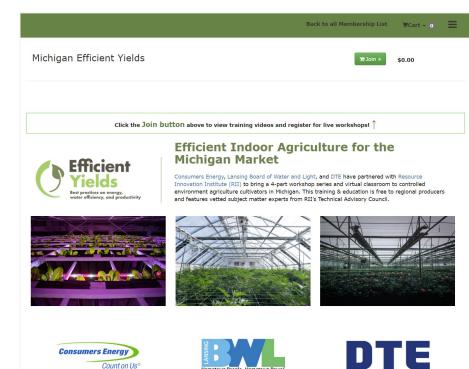
Help Michigan greenhouse producers improve the efficiency of their operations with lighting, HVAC, and curtain systems

Convey scientific insights directly to producers and finding the best ways to translate them in the context of a local ecosystem

Help energy efficiency programs achieve their energy savings and climate goals through knowledge sharing

Encourage cultivators to take advantage of Michigan efficiency program resources and incentives

Access Your Michigan Virtual Classroom


Continue Learning Online

Free guidance on efficient cannabis cultivation

All live workshops are available for on-demand viewing!

- Recordings of live workshops
- Tip Clips
- Downloadable resources
- Consumers Energy, Lansing BWL, and DTE tools

Create an account at ResourceInnovation.org/Michigan

Stream the Lighting Workshop

Best Practices for Horticultural Lighting

Featuring speakers from Agnetix, TSRgrow, Seinergy, and SixLabs

Learn how LED lighting can influence crop quality and yields, how to inform lighting designs, and how to evaluate lighting solutions

Watch the February workshop on-demand on the RII catalog

Access all classroom content at ResourceInnovation.org/Michigan

Register for the Next Two Workshops

Access the virtual classroom to continue learning

Free guidance on efficient cannabis cultivation

All live workshops are available to stream on-demand!

May 24

 Facility Design & Construction Best Practices for Efficient Indoor Agriculture

June 21

 Controls & Automation Best Practices for Efficient Indoor Agriculture

FACILITY DESIGN & CONSTRUCTION FOR EFFICIENT INDOOR AGRICULTURE

May 24, 2022

CONTROLS & AUTOMATION BEST PRACTICES FOR EFFICIENT INDOOR AGRICULTURE

June 21, 2022

Environmental Quality Impacts Crop Growth

Optimize Air Quality

Greenhouse cultivation spaces are affected by:

- Outdoor temperature
- Sunlight
- Supplemental lighting systems
- HVAC systems
- Curtains

Characteristic	Quality	Plants	Fungi
Temperature	Too High	High leaf temperatures, leaf tip burn, wilting, early bolting, root rot, heat stall	Triggers thermophilic microflora, mycelium and spore death
	Too Low	Reduced metabolic rate, reduced yields	Reduced mycelium growth, limited development
Humidity	Too High	Pathogen outbreaks like powdery mildew and Botrytis, leaf tip burn	Insect infestation, condensation on mushrooms, slimy caps, mold
	Too Low	Outer leaf edge burn, foliar diseases	Casing hardening, dehydration, aborted primordia
Airflow	Too High	Reduced transpiration (closed stomata), desiccation	Scaly mushrooms
	Too Low	Mold growth, diseases	Thin stalks, open mushrooms, reduced second flush

Key Factor for CEA Crop Production

Vapor Pressure Deficit

Influenced by temperature and relative humidity of cultivation space and the temperature of CEA crops

- VPD of 0.8 1.0 ideal for most plants
- Greenhouses can have wide swings in humidity depending on facility construction and HVAC system type
- Environmental controls are key to maintain target VPD range

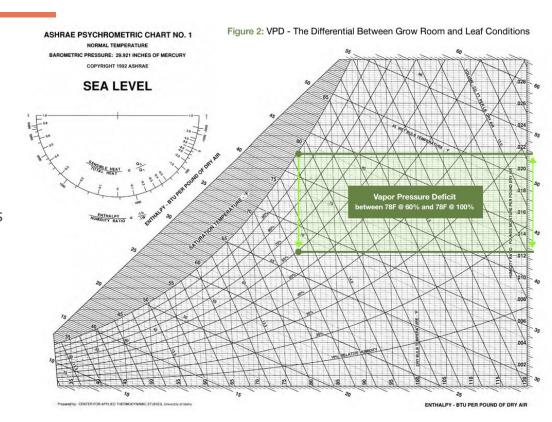


Figure credit: RII, Desert Aire

BENEFITS OF HIGH PERFORMANCE SYSTEMS

Benefits of High-Performance Greenhouse Systems

Energy and Non-Energy Benefits

Greenhouse systems like coverings, curtains, supplemental lighting, and controls can:

- Optimize crop quality
- Steer crops
- Maximize KPIs
- Ensure resilience

Energy-Saving HVAC Solutions	Energy Savings Potential	
Greenhouse Envelope Systems	5 - 50%	
LED Horticultural Lighting	30 - 40%	
HVAC Systems: Heating systems Root zone heating systems Cooling systems Variable frequency drives (pumps and fans) Humidity management equipment Environmental controls Airflow controls	20 - 30%	
Integrated Controls Systems	15 - 30%	

Shade and Thermal Curtains

Climate Curtains or Screens

- Some curtains both shade and insulate, some do one or the other
 - Open-weave (open structure) curtains may not insulate
 - Transparent thermal curtains may not shade
- Climate Screens can:
 - Manage solar radiation
 - Reduce heat loss at night and in colder months
 - Protect plants on sunny and hot days
 - Save energy on both heating and cooling
 - Reduce utility bills
- Manually operated or automatically controlled

Right Climate for Growth

The Right Climate for Growth

A better climate for every crop

Light

Temperature

Energy

Optimizing these factors is key to achieving growing goals.

Figure credit: Ludvig Svensson

Different Screens for Different Goals

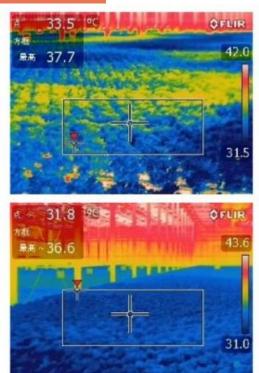


Figure credit: Ludvig Svensson

Diffusion: Even Temperature & Lighting

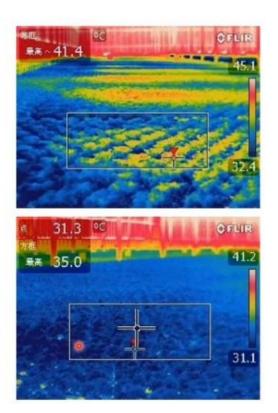


Figure credit: Ludvig Svensson

Other Light Deprivation Considerations

Light Traps

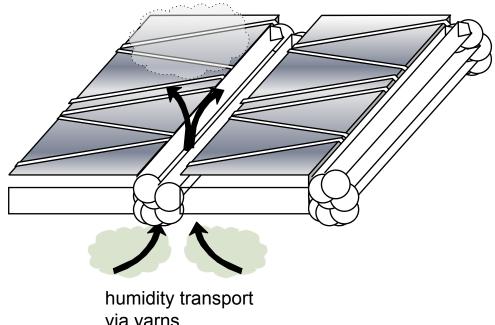


Figure credit: Ludvig Svensson

Rollup Screens & Side Walls

Moisture Management in Screens

- Reduces risk of diseases
 - Powdery mildew
- Gray mold
 - Other fungal diseases
- Helps prevent humidity level extremes and condensation formation on the screen
- Humidity control is vital for CEA during flowering & fruiting

via yarns

Michigan Energy Savings from Curtains (Cannabis)

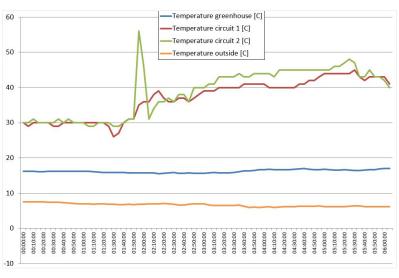
ANNUAL SUMMARY			
Scenario names	No screen	Light Dep Blackout	Dep + Transparent Energy
Screen 1	2	OBSCURA_10070_FR_WB+E	OBSCURA_10070_FR_WB+
Screen 2	-	-	LUXOUS_1147_FR_Eco
Screen 3	£	8	-
Vertical 1	-	OBSCURA_10070_R_FR_W	OBSCURA_10070_R_FR_V
Vertical 2	. 5.	NI NI	-
Energy consumpt. (m3 gas)	437 691	251 075	227 892
m3 gas/m²	107.28	61.54	55.86
Energy expenditure	218 845	125 537	113 946
US Dollars/m²	53.6	30.8	27.9
Energy saving (%)	-	43%	48%
Investment	-	57 120	89 760
US Dollars/m²	*	14.00	22.00
Return on investment (year)	-	0.6	0.9

Figure credit: Ludvig Svensson

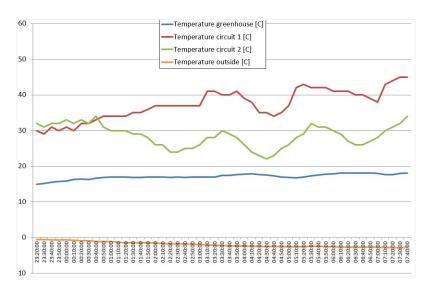
Michigan Energy Savings from Curtains (Tomatoes)

Scenario names	No screen	Light Abatement Blackout	tement + Transparent Ene
Screen 1		OBSCURA_9950_FR_W	OBSCURA_9950_FR_W
Screen 2	PQI	2	LUXOUS_1147_FR_Eco
Screen 3	(*)	-	-
Vertical 1	165	OBSCURA_10070_R_FR_W	OBSCURA_10070_R_FR_
Vertical 2		-	2
Energy consumpt. (m3 gas)	402 758	291 883	244 948
m3 gas/m²	98.72	71.54	60.04
Energy expenditure	201 379	145 942	122 474
US Dollars/m²	49.4	35.8	30.0
Energy saving (%)	-	28%	39%
Investment	*	48 960	73 440
US Dollars/m ²	357	12.00	18.00
Return on investment (year)	-	0.9	0.9

Figure credit: Ludvig Svensson


Blackout Screens: Energy Loss

 Heat, humidity can build up under normal blackout screens increased by:


- Supplemental lights
- Pipe temperature
- Climate
- Common Solution: Gapping Screens
- Common Issues:
 - Difficult to manage
 - Light abatement regulations becoming common
- Solution: Active dehumidification with vertical air movement

Vertical Air Movement Energy Savings Potential

Screen in open position

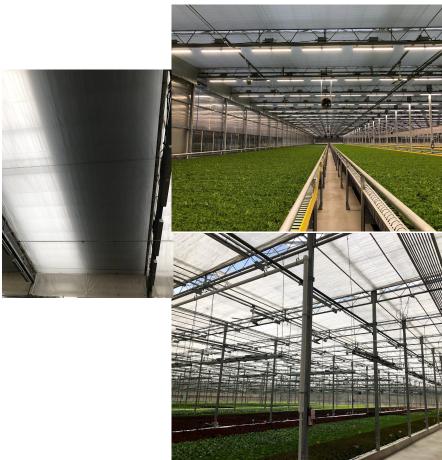
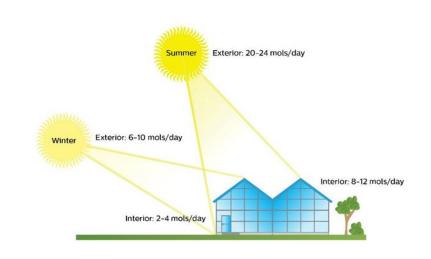

Screen in **closed** position

Figure credit: Ludvig Svensson

Envelope/Shade/Thermal Curtains In Cold Climate Field Example

Western Michigan Project

- Hydroponic Lettuce Grower
- Glass venlo with sidewall & roof vents, LEDs
- Phase 1 aluminized shade & energy curtain
 (55% shade, 57% energy savings
- Phase 2 light abatement blackout curtain (99% shade, 50% energy) and diffusion, shade, and energy curtain (20% shade and 47% energy savings)
- Greater energy savings, greater control over climate with multiple curtains
- Variable shading concept
 Figure credit: Ludvig Svensson



Michigan Light Resource

Meeting Greenhouse DLI Targets

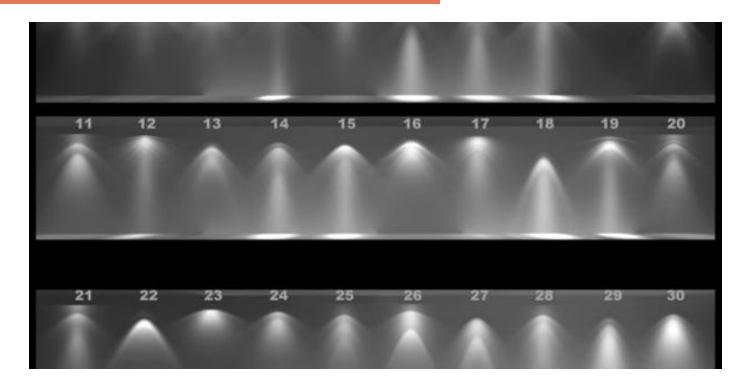
Some crops may need supplemental lighting because:

- <u>Available sunlight</u> in winter may not be sufficient to meet target quantity of daily light (daily light integral, DLI)
- Other months of the year, some days may have limited solar resource due to weather
- Greenhouse coverings reduce light transmission from sunlight by up to 50%
- Certain stages of plant growth need more light than sunlight can provide (higher PPFD)

Michigan Solar Resource Across the Year

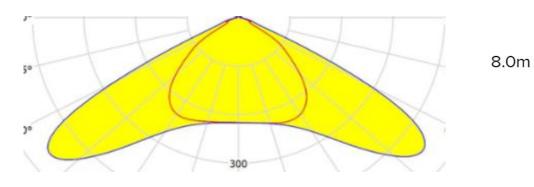
January, 5 - 15 mols/ m² day

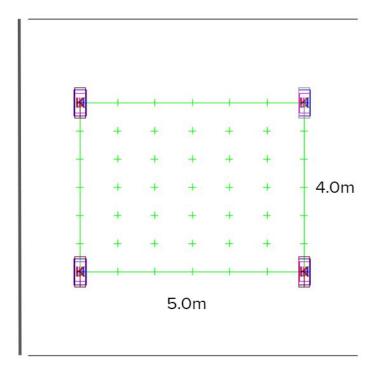
April, 30 - 40 mols/ m² day


July, 30 - 45 mols/ m² day

October, 15 - 20 mols/ m² day

Figure credit: Clemson University


Supplemental Lighting Beam Angles & Light Distribution



Ideal Greenhouse Lighting Distribution

Optimize Distribution for Greenhouse Lighting

• 125 degrees

Calculation Square = 4x5m

Choosing Toplighting Solutions

Toplighting for Plant Growth and Development

- Select appropriate PPFD & Spectrum as supplement light to sunlight
- Intensity & spectrum uniformities are key for healthy and consistent growth
- Choose efficient lighting solutions for energy saving and grid health:
 - PPE & Power Factor as high as possible
- Consider mounting and ease of electrician install:
 - Review Weight as close to HID DE
 - Wiring for power and controller less possible

Spectrum		R95B5	R90G5B5
Optics		MD125	MD125
Input voltage		200-400V	200-400V
Output	+/-5%	2700 μmol/s	2650 μmol/s
PF Efficiency	+/-3%	3,6 µmol/J	3,5 µmol/J
Input Power at 100%	+/-5%	760W	760W
	Tolerance		

Choosing Energy Efficient Greenhouse Lighting

Maximize Efficiency and Optimize Distribution

Reference Criteria for you to Pick a Light:

- o PPE
 - 3.6 umol/J possible with LED technology
- Spectrum
 - B5G5R90 popular spectrum
- Distribution
 - 125 °batwing Most Uniform Optics
- Weight:
 - 11.5 Kg for a 1040 W light Same as 1000 W DF

Spectrum		R95B5	R95B5	R90G5B5	R90G5B5
Optics		MD125	W140	MD125	W140
Input voltage		200-400V	200-400V	200-400V	200-400V
Output	+/-5%	3700 μmol/s	3600 μmol/s	3600 μmol/s	3500 μmol/s
PF Efficiency	+/-3%	3,6 µmol/J	3,5 µmol/J	3,5 µmol/J	3,4 µmol
Input Power at 100%	+/-5%	1040W	1040W	1040W	1040W
	Tolerance				

Spectrum Selection for Greenhouse Applications

Spectral Treatments for Different CEA Crops

Balance red:blue ratio (R:B)

Narrow band LEDs produce photons in certain wavelengths like red and blue

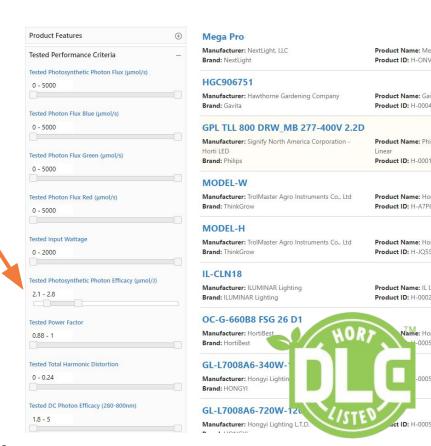
- For example, 95:5 (95Red 5Blue) works great for tomatoes
- Savings about 40% energy
- For other crops, full spectrum lighting may be needed
- Other crops may find far-red light useful
- Lighting choices should be tailored to your crop, its growth stage, environmental conditions, and other factors such as the need for white light for staff to observe crop appearance

Many studies done and still ongoing at lighting manufacturers, academic research laboratories, and cultivator facilities.

Review Certified Equipment

Use DesignLights Consortium Qualified Products List (QPL)

- Visit https://qpl.designlights.org/horticulture
- DLC is a non-profit that makes tools to accelerate energy efficiency in lighting
 - Stakeholder input and Industry Standards are critical
- All QPL listed products require
 - Horticultural Lighting Safety Certification (UL 8800)
 - 5 year warranty for complete LED fixtures and 3 years for LED lamps
 - Component lifetime requirements (36,000 50,000 hours)
 - Representative testing to industry standards



DLC Qualified Product Lis	sts >
You have 662 saved items	
DOWNLOAD MY LIST	
Listed Products	,
Manufacturer	(+)
Brand	(+)
Technical Requirements Version	+
State Compliance	(+)
Product Features	(+)
Tested Performance Criteria	(+)
Reported Performance Criteria	(
₽ RESET FILTERS	

Review Certified Equipment

Use DesignLights Consortium QPL

- Visit https://qpl.designlights.org/horticulture
- Filter by PPE
 - Choose a minimum and maximum PPE
 - Understand that fixtures with high PPE may be more expensive
 - 3.6 3.8 umol/J is the upper bound for fixtures in for attractive grower ROI and may have high amounts of red diodes
- State Compliance filter for businesses operating in states with minimum PPE requirements (MA, IL, soon to be CA)

Light Abatement Solutions

Preserve Dark Skies

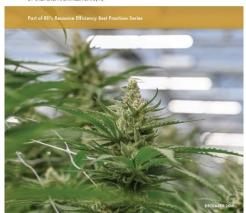
Concept:Blackout Screen for keeping light in the greenhouse

- Single layer
- Reflective
- Increases light intensity on crop
- 99% reduction in light emission
- Effective with both HPS and LED
- Compliance with regulations
- Doubles as energy screen

Cannabis Lighting Best Practices Guide

Brand-agnostic information for producers

Free peer-reviewed guidance on horticultural lighting


- Speak the language relevant to lighting systems in horticultural applications
- Understand types of lighting systems optimizing horticultural environments
- Review manufacturer's literature to evaluate your purchasing options and select horticultural lighting equipment
- Install and operating successful LED lighting solutions in alignment with business models
- Use data from lighting systems to improve productivity and efficiency
- Demonstrate energy savings for utility energy efficiency incentive programs

LED LIGHTING FOR CANNABIS CULTIVATION

& CONTROLLED ENVIRONMENT AGRICULTURE

BY GRETCHEN SCHIMELPFENIG PE

DOWNLOAD NOW

Greenhouse Envelope: Evaporative Cooling

Evaporative Cooling

- Wetted fill media provides cooling
- Fans may be utilized to induce air
- Recommend annual cleaning
- Fill media replacement every 8 years
- Manually operated or automated

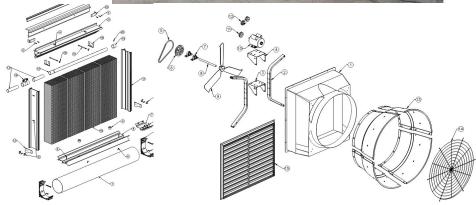


Figure credit: Hoogendoorn, NBDS

Fans

Horizontal Air Flow

Arranged end to end (discharge to intake)

Sidewall

Arranged with and without padwall

Gable

 Remove heat "trapped" above shades

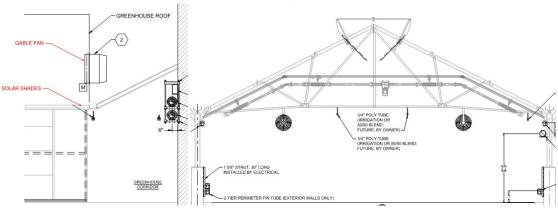


Figure credit: Hoogendoorn, NBDS

Closed and Semi-Closed Greenhouse Heating and Cooling

Tubes

- Made from fabric or polytube
- Distributed under canopy or overhead

Cooling

Direct expansion or chilled water

Heating

Typically heating hot water or possibly waste heat

Cannabis HVAC Best Practices Guide

Brand-agnostic information for producers

Free peer-reviewed guidance on HVAC for cannabis cultivation

- Speak the language relevant to HVAC in horticultural applications
- Understand types of HVAC systems optimizing horticultural environments
- Review manufacturer's literature to evaluate your purchasing options and select horticultural HVAC equipment
- Install and operating successful HVAC solutions in alignment with business models
- Use data from HVAC systems to improve productivity and efficiency
- Demonstrate energy savings for utility energy efficiency incentive programs

HVAC FOR CANNABIS CULTIVATION

& CONTROLLED ENVIRONMENT AGRICULTURE

BY GRETCHEN SCHIMELPERNIG PI

DOWNLOAD NOW

Factors Influencing HVAC Loads

Driving HVAC Capacity, CapEx, and OpEx

Lighting system choice and target VPD affect HVAC system size

- Bigger HVAC systems have higher capital costs
- Oversized HVAC systems cost more to run

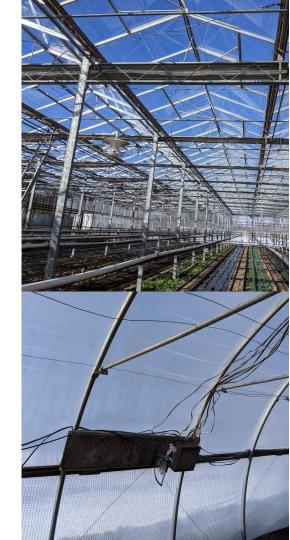
IMPACT OF TARGET ENVIRONMENTAL CONDITIONS AND LIGHT SOURCE ON THE REQUIRED CAPACITY OF HVAC EQUIPMENT TO OFFSET HEAT LOADS

TARGET INDOOR ENVIRONMENTAL CONDITIONS					LIGHTING SYSTEM WATTS PER SQUARE FOOT			
Various Scenarios	Dry Bulb Temperature (F)	Relative Humidity (%)	Dew Point Temperature (F)	Vapor Pressure Differential (kPa)	LED LPD=35 (W/sqft)	Hybrid LED/HID LPD=45 (W/sqft)		
Scenario 1	80	60%	65	1.40	100%	125%	150%	
Scenario 2	75	55%	64	1.33	138%	145%	163%	
Scenario 3	70	50%	51	1.25	188%	188%	188%	
Scenario 4	65	50%	46	1.05	225%	225%	225%	

Figure credit: RII, Cannabis Business Times

Equipment Operating in harmony

Latent Loads


- Plants
- Padwall
- Fertigation
- Infiltration (Conduction and Pressurization)

Sensible Loads

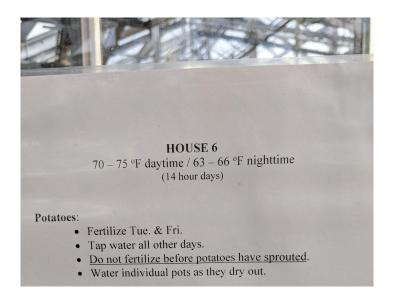
- Solar / Supplemental Lighting
- Infiltration (Conduction and Pressurization)

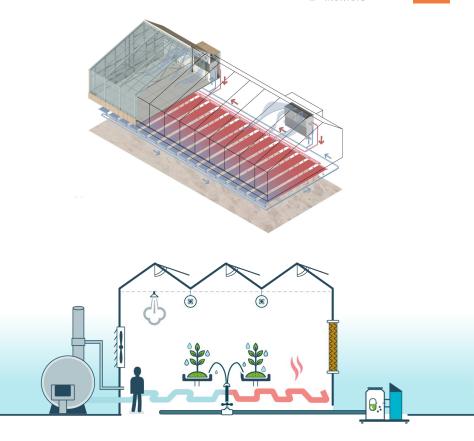
Enrichment

• CO2

Equipment Operating in Harmony

Total Utility Consumption


- Develop total carbon footprint of farm
 - Water
 - Electric
 - Gas
 - Sewer


Facility operation

 Target your yields while controlling the environment to minimize environmental and operational cost

Equipment Operating in Harmony

Equipment Operating in Harmony

Figure credit: Priva

Equipment Operating in Harmony

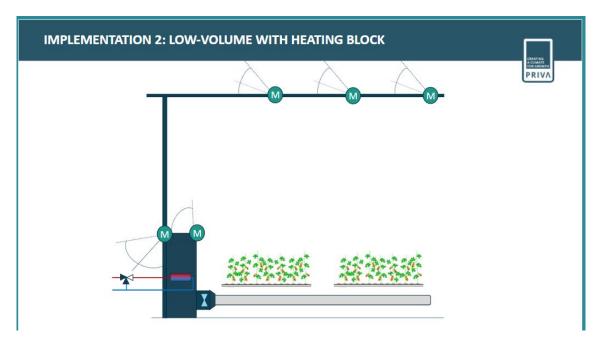


Figure credit: Priva

Equipment Operating in Harmony

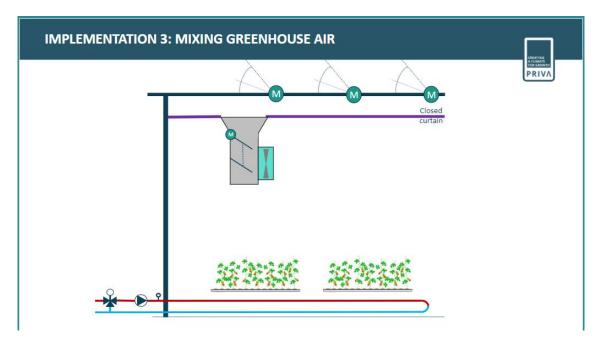


Figure credit: Priva

Lighting Controls Value Proposition

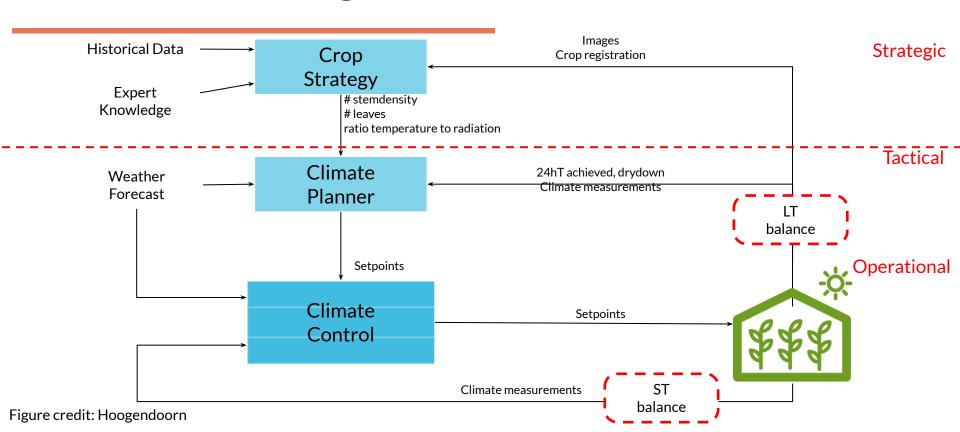
Dial in the number one nutrient for plants

Provide with granularity:

- Proper light levels
- Optimal spectra for cultivars
- Preferred photoperiod by stage of development
- Desired DLI to empower plant growth

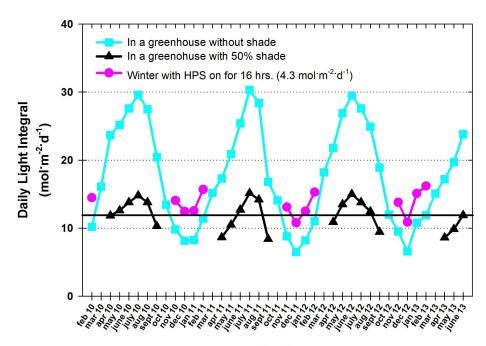
Provide plants with the exact intensity and quantity of light while minimizing energy consumption and lowering bills

HVAC Controls: Value Proposition

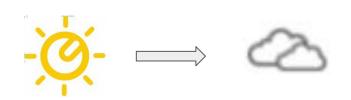

Optimize environmental conditions for plants

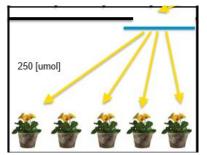
- Proper temperature (space, relative & leaf), humidity, airflow, CO2 levels
- Optimal plant growth, control mold, mildew and other pests
- ROI plus visibility of data to create a more stable operation

Reduce operating costs while maximizing efficiency and productivity



Data-Driven Growing


Shade Curtains to Maintain DLI Targets



Two-Curtain Controls: Variable Shading for Better Climate

Light Diffusion screen + 2nd screen to create variable shading to ensure consistent sunlight to crop, and with even light spread

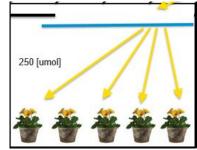


Figure credit: Ludvig Svensson

Increase Fabric Longevity with Programming

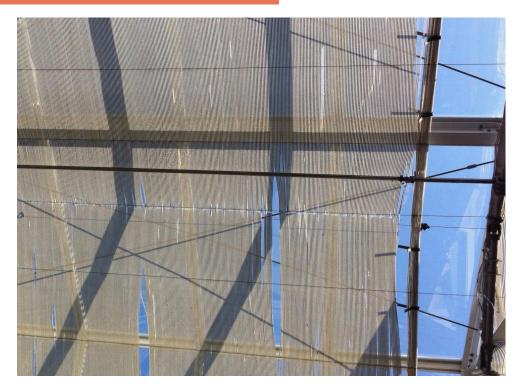
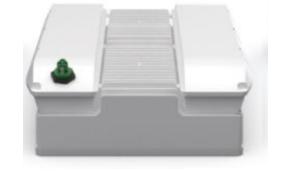
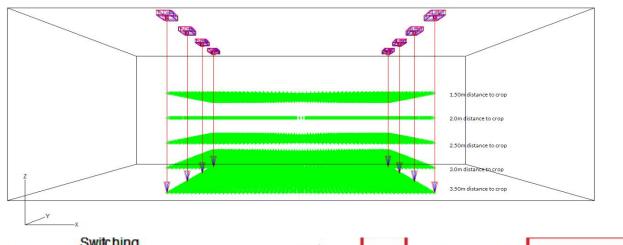



Figure credit: Gretchen Schimelpfenig

Greenhouse LED Lighting Field Test



Standard size - (2) pcs in 8m Truss 5m post distance

Hawthorne Agrolux WEGA 760 W

Greenhouse Lighting Modeling

Calculation	Switching Mode	Туре	Unit	Ave	Min	Max	Min/Ave	Min/Max	Result
WEGA: 3.0m: 100%	1	ppfd	µmol	174	165	187	0.95	0.88	Direct
WEGA: 2.0m: 100%	1	ppfd	µmol	179	136	210	0.76	0.65	Direct

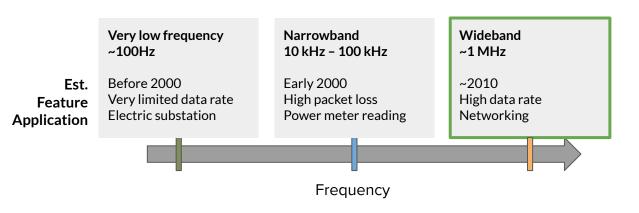
- >170 umol/s m² average PPFD
- >90% uniformity at 3 m hanging height between fixture and crop top
- >70% uniformity at 2 m hanging height between fixture and crop top

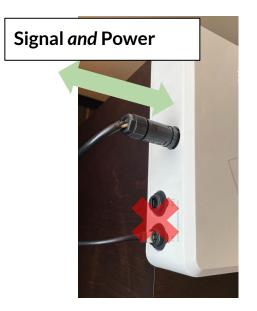
PLC Controls

Power

Power line communication (PLC) uses existing AC power lines for control signal besides supplying power

Eliminate signal cable Less installation effort





Greenhouse Controllability

- Power line communication (PLC) uses existing AC power lines for signal communication besides supply power
- Benefit: eliminate signal cable and lower installation cost

Data-Driven Greenhouses

Future Data Characteristics

- Accurate
- Repeatable
- Scalable

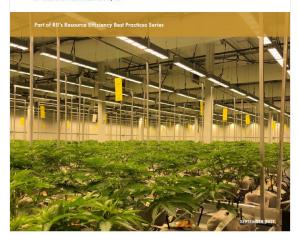
Impact on Growers

- Machine Learning
- Artificial Intelligence
- Lower Operating Expense

Cannabis Controls Best Practices Guide

Brand-agnostic information for producers

Free guidance on lighting, HVAC, and water controls

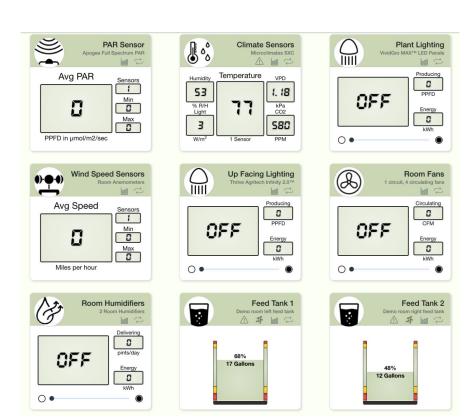

- Speak the language relevant to controlling and automating environmental control systems in horticultural applications
- Understand types of control systems optimizing horticultural environments
- Plan for integrated controls approaches in greenhouses and indoor operations
- Install and operating successful controls solutions in alignment with business models
- Use data from control systems to improve productivity and efficiency
- Demonstrate energy savings for utility energy efficiency incentive programs

AUTOMATION & CONTROLS FOR CANNABIS CULTIVATION

& CONTROLLED ENVIRONMENT AGRICULTURE OPERATIONS

BY GRETCHEN SCHIMELPFENIG, PE

DOWNLOAD NOW


Validate System Sequences of Operation

Performance Testing for Equipment

Controls systems dashboards help teams verify HVAC, lighting, and curtain components react to satisfy targets for:

- Light intensity
- Temperature
- Relative humidity

Commissioning is crucial to check that systems stage together properly

Using Data: Trending History

Back up stored data regularly

- Hundreds of sensors measuring various conditions and collecting data at regular intervals to track historical trends
- A typical control system can generate tens of thousands of data points from a cultivation facility every single day
- Determine how long you want to store your historical logs of trends

Save multiple years of data for year-over-year comparisons

Figure 5: Dashboard of Trended Facility Data

Figure credit: Microclimates

HVAC Controls Trends: VPD Controls

Validate actual conditions are within target ranges

VAPOR PRESSURE DEFICIT

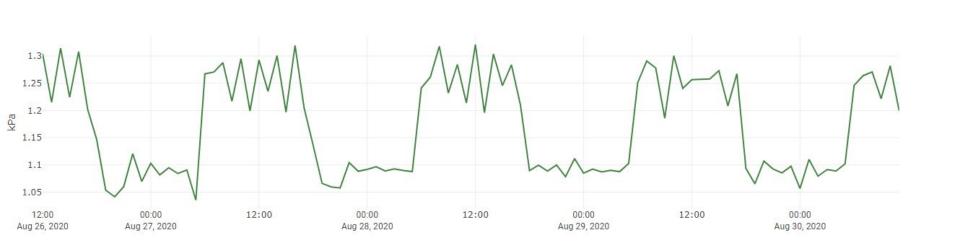


Figure credit: Inspire Transpiration Solutions

Document Baselines

Capture Market Practices and Performance

Benchmark your production environments to create baselines for resource efficiency:

- Energy
- Water
- **Emissions**

Understand how your facility performs compared to your key performance targets

A selection of crops grown indoors

Greens leafy greens, lettuce, spinach

Hops

Insects

Strawberries

Flowers perennials, annuals,

Vine Crops

tomatoes, peppers,

cucumbers, eggplants

Commodities corn, wheat

Microgreens/ herbs

Vegetable **Transplants**

Fruits

Cannabis

Other Vegetables

Targets for Data Driven Growing

Optimize environmental conditions for plants

- Energy efficiency:
 - Light usage optimization (PAR)
 - Cooling / Heating (HVAC) optimization
 - Energy consumption prediction and planning
- Water efficiency
 - "Ideal" irrigation strategy
 - Water balance
- Nutrients efficiency
 - Balance
 - Prediction models : quality and quantity
- CO2 efficiency

Use Data from Automated Integrated Control Systems

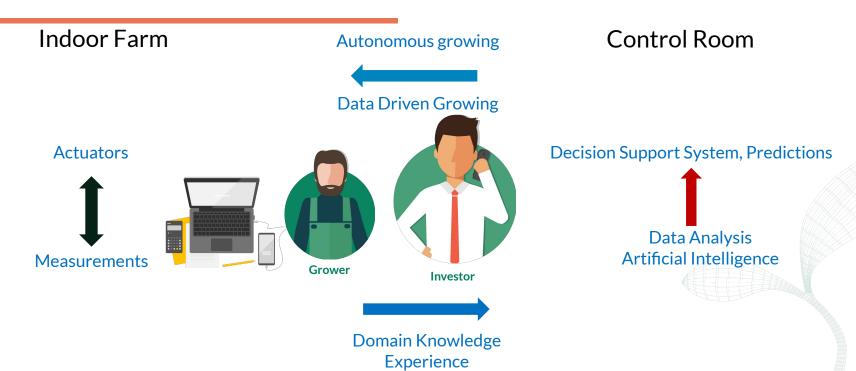


Figure credit: Hoogendoorn, Plant Empowerment

Facility Performance Snapshots

Key Performance Indicators for CEA

Quantify performance of CEA facilities using specialized key performance indicators for:

- Efficiency
- **Productivity**

Understand how system operation affects facility lighting. HVAC, and energy KPIs

 $kWh/day \rightarrow annual facility energy use$

Observe changes in canopy productivity

Calculated PowerScore

#47974088-21, Indoor, Grantsville, MD, Climate Zone 5A, July 2020 - June 2021

Figure credit: RII, PowerScore

Benchmarking Lighting System KPIs

Staged Installation of Supplemental Lighting

Greenhouse adding more lighting to fully utilize bench area, added a mix of HID and LED fixtures in 2021, modeling two future LED scenarios

Installing LEDs saved electricity and avoided peak demand while increasing value of bench area in use and reducing idle space

Future scenarios further reduce operating costs

Benchmarking allows for payback period calculations

Performance Snapshot

	Idle Space (%)	Value of Space in Use (\$)
2021 - 2020 Difference	-3%	7%

Efficiency Utilities Serving Michigan

Three Regional Utilities with Efficiency Programs

- Utility service territories determine eligibility
- Growers in Michigan can benefit from technical assistance and financial incentives
- Incentives reduce the first cost of high-performance technology

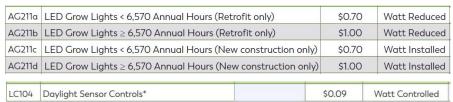
CEA Efficiency Project Landscape: Greenhouse

Consumers Energy, with their consulting and their rebate program has helped – and will help – our business grow for years to come. - Kari P., Manager, Panse Greenhouses, LLC – Kalamazoo, MI

Consumers Programs for Producers

Energy Efficiency Programs

- Grow in your greenhouses for less and earn rebates when you install:
 - Infrared thermal film
 - Heat curtains
 - In-floor heating
 - Environmental control systems
 - LED grow lights
- Consumers customers can contact Rachel or Tom <u>rachel.fredrickson@cmsenergy.com</u>
 <u>tom.gallagher@cmsenergy.com</u>
 - Call: 877-607-0737



Greenhouse Application

Program Offerings for CEA Customers

Energy Efficient Equipment Incentives for Indoor Farms

\$0.70 - \$1.00/W reduced for horticultural lighting

\$40 - \$80/hp VFDs

Other Program Offerings

- Free technical assistance to identify and prioritize energy efficiency projects
- Energy audits and facility walkthroughs for large customers

Consumers Energy customers may qualify for participation. Contact Rachel or Tom for more information!

Program Offerings for CEA Customers

Energy Efficient Equipment Incentives for Greenhouses

Count on Us®

ID	Greenhouse (Pre-Notificati (Consumers Energy Natural Go		Incentive	Unit
AG105	Greenhouse Heat Curtains		\$0.25	Square Foot
AG106	Greenhouse Infrared Film Replacing a Single Layer with Double Layer		\$0.50	Square Foot
AG107	Greenhouse Infrared Film Replacing a Double Layer with Double Layer		\$0.15	Square Foot
AG108	Greenhouse Environmental Controls		\$0.30	Square Foot
AG109	Greenhouse In-Floor Heating System (Without Heat Curtains)		\$0.50	Square Foot
AG110	Greenhouse In-Floor Heating System (With Heat Curtains)		\$0.25	Square Foot
HV309	High-Efficiency Unit H	eater (at Least 92% Efficient)	\$3.99	МВН
HV310	High-Efficiency Unit Heater (at Least 95% Efficient)		\$7.91	МВН
AG111a	<u> </u>	24 Inch to 35 Inch Fan Blade Diameter	\$30.00	Fan
AG111b	Circulation, Exhaust or Ventilation Fans	36 Inch to 47 Inch Fan Blade Diameter	\$50.00	Fan
AG111c	or ventulation Fans	48 Inch to 72 Inch Fan Blade Diameter	\$100.00	Fan

Consumers Greenhouse Customer Incentive Examples

Project Types

- installing greenhouse IR/AC film,
- thermal curtains,
- LED grow lights,
- environmental controls

Energy Saving Results

Lowered energy bill by: \$115,000

Rebate amount: \$125,000

Electric savings: 876,304 kWh

Natural gas savings: 2,353 Mcf

Energy Saving Results

Lowered energy bill by: \$2,994

Rebate amount: \$16,000

Electric savings: 1,616 kWh

Natural gas savings: 1,067 Mcf

Consumers Greenhouse Customer Incentive Examples

Project Types

- installing greenhouse IR/AC film,
- thermal curtains,
- LED grow lights,
- environmental controls

Energy Saving Results

Lowered energy bill by: \$6,232

Rebate amount: \$13,000

Electric savings: 3,232 kWh

Natural gas savings: 1,299 Mcf

Energy Saving Results

Lowered energy bill by: \$8,307

Rebate amount: \$25,000

Natural gas savings: 1,846 Mcf

Program Offerings for CEA Customers

Energy Efficient Equipment Incentives for Greenhouses

- Greenhouse Environmental Controls- \$50/1,000 sq. ft
- Heat Curtains- \$.05/sq. Ft
- Infrared Film- \$.05/sq.ft
- LED Lighting- incentives vary
- Hydronic heating-\$.14 or \$.08/sq ft. depending on thermal curtains
- Circulation exhaust fans
- Vfds on pumps and fans
- ...and more

Contact Jeff for more information! <u>Jeff.Linkimer@dnv.com</u>

https://www.dtebizrebates.com/

DTE Program Growth

Greenhouse gas emissions avoided since 2019 equivalent to removing 15,197 passenger cars.

DTE Greenhouse Projects

5 greenhouse projects in 2021

- LED Lighting (prescriptive)
- LED Lighting (custom)
- VFD's on Hot Water Pumps
- **Exterior Lighting**
- **HVAC** Reduction

Incentives:

\$110,863

Energy Savings:

2.17 million kWh per year

Program Offerings for the Lansing BWL Customers

2022 Energy Efficient Equipment Incentives for Indoor Farms

New Construction Lighting Incentives	
LED Grow Light	\$0.25 - \$0.40/Watt installed
Retrofit Lighting Incentives	
LED Grow Light	\$0.30 - \$0.45/Watt reduced
LED Cannabis Grow Light	\$0.30-\$0.60/Watt reduced
New Construction & Retrofit	
HVAC Load Reduction due to LED conversion	\$0.10/Watt reduced
Dehumidification of Indoor Grow Facilities	\$1.75/Pint/Day
Incentive Caps	
\$50,000 per meter; \$250,000 per customer	

2022 Custom Incentive

2022 Custom Incentive		
All Custom Energy Savings Measures	\$.07/kWh Saved	

Contact Erikka Byrge for more information! ebyrge@slipstreaminc.org

Website: https://www.lbwl.com/customers/save-money-energy/indoor-agriculture-program

Hometown Energy Savers Greenhouse Savings

Energy Efficient Equipment Incentives for Greenhouses

Energy savings measures incentivized: VFD Controls on process pumps/fans Refrigerated storage optimization		
Estimated annual electric energy savings	176,504 kWh	
Estimated peak savings	9.4 kW	
Cash incentive awarded	\$12,002	
Estimated annual cost savings	\$22,945	

Hometown Energy Savers Greenhouse Savings

Energy Efficient Equipment Incentives for Greenhouses

Energy savings measures incentivized: Geothermal heating/refrigeration Geothermal in-floor heat for seed germination		
Estimated annual electric energy savings	184,838 kWh	
Cash incentive awarded	\$12,939	
Estimated annual cost savings	\$24,029	

Hometown Energy Savers Greenhouse Savings

Energy Efficient Equipment Incentives for Greenhouses

Energy savings measures incentivized: LED Grow Lighting		
Estimated annual electric energy savings	1,176,949 kWh	
Estimated peak savings	229.7 kW	
Project cost	\$502,800	
Cash incentive awarded	\$50,000	
Estimated annual cost savings	\$153,003	
Simple payback	3.0 years	
stimated annual cost savings	\$153,003	

Michigan Saves

Statewide program


- Offering below-market rates for energy efficiency financing
 - \$5,000 \$5,000,000 project size
 - o 60 month terms but can go longer
 - One page financing application for equipment finance agreement
 - UCC filing on equipment only
 - Special 0% financing through DTE and CE
- Contractors
 - Quick and easy application to become an Authorized Contractor
 - 75% Pre-funding for Contractors
 - Low contractor fee (1.99%)

Contact Todd O'Grady at 248-701-3058

Visit MichiganSaves.org to learn more

Visit us at www.ResourceInnovation.org

P.O. Box 5981
Portland, Oregon 97228
derek@resourceinnovation.org
gretchen@resourceinnovation.org
carmen@resourceinnovation.org

