

Lighting Best Practices for Efficient Indoor Agriculture

In partnership with

October 18, 2022

Agenda

Introduction & Purpose

1:30 pm

How CEA Crops Use Light

Benefits of Using LED Lighting

Optimizing Lighting System Design

Maximizing Financial Incentives for CEA Lighting

LED Lighting Best Practices for Vertical Farming

Considerations for Lighting Controls

Commissioning Sole-Source Lighting Controls

Benchmarking Lighting System KPIs

SCE New Lighting Incentives

Efficiency Program Examples

Q&A

INTRODUCTION & PURPOSE

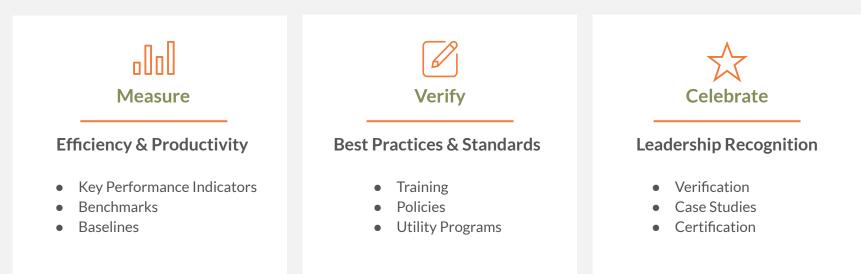
SECTION 01

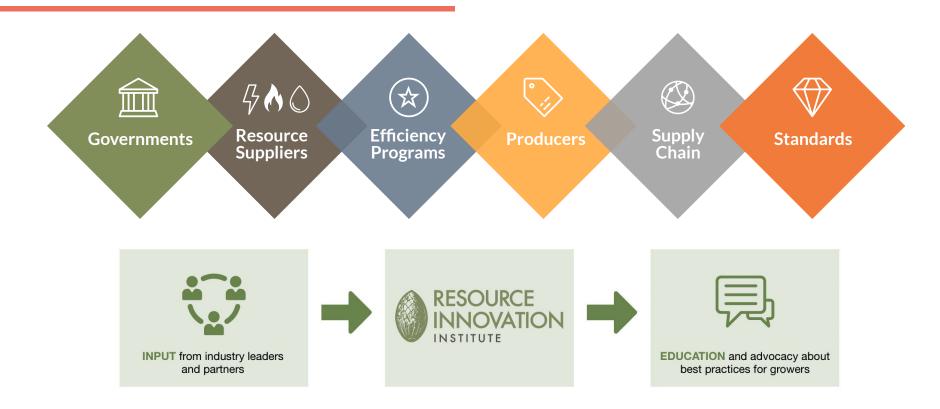
About RII

Objective, data-driven non-profit

Founded 2016 in Portland, Oregon

Expertise in climate policy, utility programs, green building certification, sustainable business, construction & indoor cultivation


In 2020, received 3-year grant from USDA to develop KPIs, standards & building rating system for CEA


What We Do / Our Mission

We measure, verify & celebrate the world's most efficient agricultural ideas.

Our Network

RII Technical Advisory Council

Multi-disciplinary body who aggregates knowledge to support producers and other stakeholders with objective and peer-reviewed data and curriculum on benchmarking resource efficiency

- Guides development of standards
- Shapes tools and resources to support best practices
- Advocates for informed policies, incentives and regulations

HVAC - Lighting - Utility - Water Policy - Data - Controls - Emissions Facility Design & Construction

ABOUT US Peer-Reviewed Publications

Best Practices Guides for Producers

Best Practices Guides for Governments and Utilities

Industry Reports on Resource Usage

Download the Lighting Best Practices Guide

Brand-agnostic information for producers

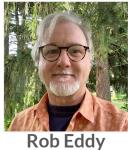
Free guidance on lighting

- Speaking the language of horticultural lighting
- Reviewing manufacturer's literature to evaluate your purchasing options
- Understanding crucial considerations when selecting LED lighting
- Installing and operating successful LED lighting solutions in alignment with your business model
- Funded by the:

Natural Resources Conservation Service

Best Practices Guide Lighting

for Controlled Environment Agriculture (CEA) Operations


BY GRETCHEN SCHIMELPFENIG, PE

DOWNLOAD NOW

Today's Speakers

Kenda Branch

HAWTHORNE GARDENING

со

California Cannabis Landscape

- Licenses
 - Specialty cottage
 - Specialty
 - $\circ \quad \text{Small}$
 - \circ Medium
 - Large (2023)
 - Nursery
 - Processor
- Outdoor
- Indoor
- Mixed-light
 - Tier 1 Up to 6 watts per square foot
 - Tier 2 6 to 25 watts per square foot
- 4 Billion legal market

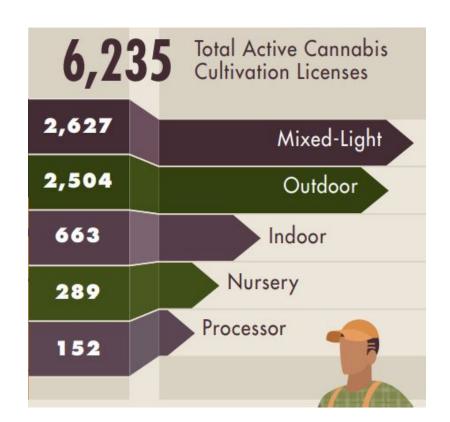
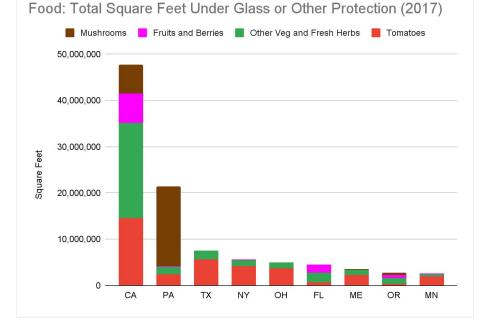



Image credit: <u>CDFA 2020</u>.

California CEA Landscape

- Food
 - $\circ \quad \text{Most area dedicated to CEA}$
 - Largest tomato growing area
 - Largest berries growing area
 - Largest other veg growing area
 - 2nd largest mushroom growing area
- Floriculture
 - Second only to Florida
 - Largest nursery stock crop area
 - 2nd largest cut flowers area

Purpose of Today's Workshop

Encourage cultivators to participate in SCE and California efficiency programs

Convey scientific insights and industry expertise directly to producers and find the best ways to translate them in the context of their local ecosystem.

Help energy efficiency programs achieve their savings goals through education and knowledge sharing

Access Your California Virtual Classroom

Continue Learning Online

Free guidance on efficient cultivation

All live workshops are available for on-demand viewing!

- Recordings of live workshops
- Tip Clips
- Downloadable resources
- SCE, PG&E and state program tools

Create an account at resourceinnovation.org/California

Antonia é Validad	California Efficient Yie Efficient Greenhouse	elds: Facility Design & Construction Best Practices for s and Vertical Farms	
Product Type	Faculty: Duration: Format:	Brian Anderson Rob Eddy Holden Orler Luis Trujillo 2 hours Audio and Video	
ON DEMAND	Original Program Date: Price:	Sep 20, 2022 \$0.00 - Non-Members Rate	
		More info » Save for Later Register	

Register for Upcoming Workshops

Optimizing CEA Environments - Aligning Your HVAC Systems with Your SOPs


November 8, 2022

Controls & Automation Best Practices for Efficient Greenhouses and Indoor Agriculture

December 13, 2022

Register and access other free resources at the

<u>RII catalog</u>

HOW CEA CROPS USE LIGHT

SECTION 02

Understand Spectra (SQD)

Target Ranges for Best Outcomes for Plants

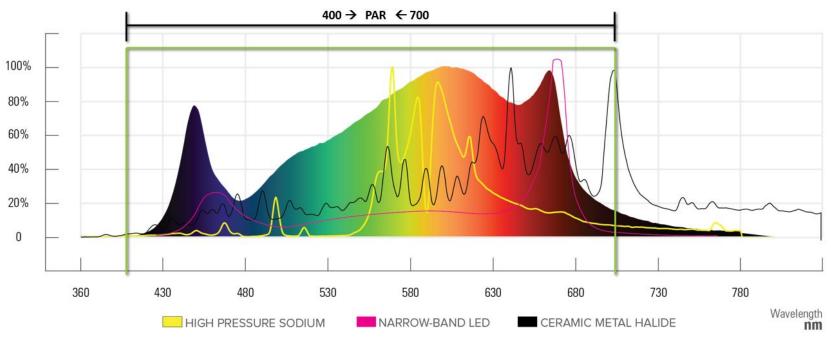
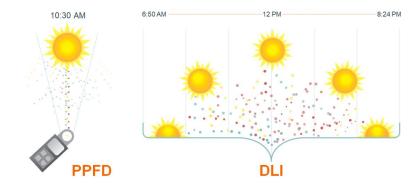


Image credit: Fluence

RESOURCE INNOVATION 18

Key Terms for Plants

Measuring Light Received by Crops


- PPFD measures instantaneous light intensity
- DLI measures amount of light over time

PPFD – Photosynthetic Photon Flux Density: the amount of PAR that actually arrives at the plant, or the number of photosynthetically active photons that fall on a given surface each second (µmol/ m²/s)

Measures light intensity, like lux or footcandles

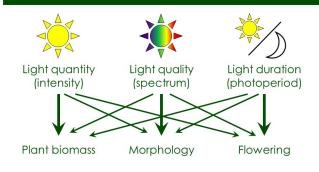
DLI – Daily light integral: the number of photosynthetically active photons (photons in the PAR range) per square meter per day (µmol/ m2/day)

Equal to the sum of PPFD over the course of the day

PPFD vs. DLI

Understand Photoperiods

Scheduling Light Treatments for Crop Growth


Photoperiod: the period of time each day during which an organism receives illumination

Long-day plants: Plants that **bloom when they receive more than 12 hours of light**, like summer blooming flowers and garden veggies like lettuce

Short-day plants: Plants like cannabis and fall flowering plants like poinsettia that **form flowers only when day length is less than 12 hours**

Phototropism: the orientation of a plant in response to light (shade avoidance, elongation, stretch)

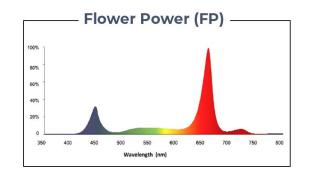
Three dimensions of light for plants

The different properties of light interact to control yield and quality attributes of plants

Image credit: Dr. Erik Runkle, Michigan State University

"Light Recipes"


Target Ranges for Best Outcomes for Plants


Light recipe: polychromatic spectrum made up of different LEDs with specific red:blue (R:B) and red:far red (R:FR) ratios

Phytochrome photostationary state: far red light informs plants about shade and increased far red light simulates shade

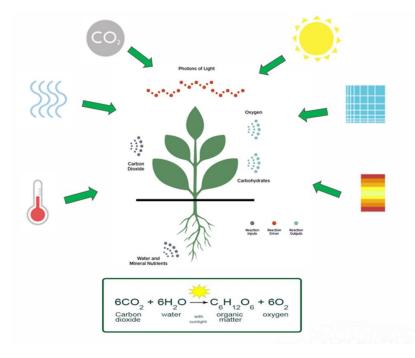
Example: an "R4" fixture might have 40% red diodes and an R8 fixture might have 80% red diodes

Example: a "FR" fixture might have a PSS value of 0.78 or 0.86

Effects of Wavelength on Plant Growth

Light	Wavelength (nm)	Major Processes	Notes	
UV-C	100 - 280	Secondary metabolism	Useful for pathogen control	
UV-B	280 - 315	Secondary metabolism, shade avoidance, phototropism	Affects (often increases) metabolites and defensive compounds; high levels disrupt growth	
UV-A	315 - 400	Secondary metabolism, photomorphogenesis		
Blue	400 - 500	Photosynthesis, shade avoidance, phototropism, secondary metabolism	Some level necessary for optimal photosynthesis	
Green	500 - 575	Photosynthesis, shade avoidance, secondary metabolism Able to penetrate further through canopy than blue/red		
Yellow / Orange	575 - 610	Photosynthesis, secondary metabolism	Using these wavelengths can increase growth and metabolites; results vary between species	
Red	610 - 700	Photosynthesis, shade avoidance, photoperiodism, secondary metabolism	Highest action spectrum for photosynthesis; important to consider ratio of red to far-red (R:FR)	
Far-red	700 - 800	Photosynthesis, shade avoidance	Enhances photosynthesis; consider R:FR	

Image credit: <u>RP-45-21</u>, Illuminating Engineering Society


Lighting Impacts Growing Environments

Lighting Interactive Effects

- Ambient conditions can affect demand for lighting (schedule and intensity)
 - Greenhouses have dynamic temperature, humidity, CO₂

Systems Affected by Lighting

- HVAC and humidity management
- Fertigation
- Curtain controls

BENEFITS OF LED LIGHTING

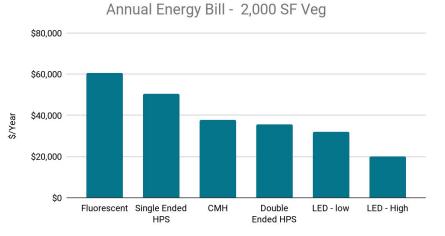
SECTION 03

Benefits of LED Lighting

- Energy Efficiency & OpEx
 - More output with fewer watts
- Financial Incentive Programs / Rebates
- HVAC Interactive Effects
 - Heat load & environmental control
 - Less watts = less heat = less AC
- Operation
 - Spectrum, controllability, dimmability, precision chemistry
- Maintenance & Business Benefits
 - Durability & lifetime

Figure data source: RII CEA Market Characterization Report, 2021

Energy Savings Potential of LED Lighting Technology


Energy-Saving Lighting Solutions	Energy Savings Potential	
 Horticultural Lighting Systems: Air-cooled LED light fixtures Liquid-cooled LED lighting systems LED lamps Lighting controls 	30 - 40%	

Save Energy and Reduce Utility Bills

Higher PPE, Lower Energy Demand, Lower Energy Bills

- Fluorescent horticultural lighting systems (like T8)can achieve PPE ranges of
 - ο 0.7 1.2 μmol/J
- HID horticultural lighting systems (like HPS) can achieve PPE ranges of
 - ο **1.0 1.7 μmol/J**
- LED horticultural lighting systems can achieve PPE ranges of
 - ο **1.8 3.0 μmol/J**
- Evaluate options based on total PPF delivered to a space

Annual Cost to Achieve 500 PPFD for 18 hours/Day, 2k SF Veg Example

Figure data source: Seinergy LLC

Compliance with Title 24 Code Changes

CEA Growing, Horticultural Lighting

In a building with CEH spaces and with more than 40 kW of aggregate horticultural lighting load, the electric lighting systems used for plant growth and plant maintenance shall meet the following requirements:

- Luminaires shall have a photosynthetic photon efficacy of at least 1.7 (greenhouses), 1.9 (indoor) micromoles per joule rated in accordance with ANSI / ASABE S640 for wavelengths from 400 to 700 nanometers.
- 2. Time-switch lighting controls shall be installed and comply with <u>Section 110.9(b)1, Section 130.4(a)4</u>, and applicable sections of <u>NA7.6.2</u>.
- 3. Multilevel lighting controls shall be installed and comply with <u>Section 130.1(b)</u>.

A STATEWIDE UTILITY PROGRAM Read the <u>Final</u> CASE Report 26

Affect HVAC System Capacity

LED Lighting Affects Sensible Heat Loads

Cultivation operations use HVAC systems sized for both latent (wet) and sensible (dry) heat loads

Heat from lighting systems adds to sensible loads

LED horticultural lighting systems put out less heat than HID lighting systems

- Lower HVAC loads means facility HVAC system HVAC capacity can be reduced (depending on the types of equipment used for heating, cooling, and dehumidification)
- Downsizing HVAC equipment can result in up to **33% lower HVAC system capital costs** and help fund higher upfront costs of LED lighting systems
- Smaller HVAC equipment can also reduce recurring operating costs for environmental management

Image credit: Agnetix

Operate Differently

Change the Way You Grow

- Mount closer to your crop canopy and provide higher light intensities with better uniformity
- Grow vertically in racking systems
- Growers can meet target PPFD with less fixtures, freeing up capital for other investments.
- No bulbs to change but boards of diodes to maintain
- LEDs can be cycled on and off and ramped up and down easily and with precise granularity
- LED fixtures capable of dimming can provide your crop canopy with exactly as much light as they need

Maintain Differently

Change Labor Utilization for Lighting

- No bulbs to change but boards of diodes to maintain
- LED can maintain light output for longer than traditional horticultural lighting solutions like HID
- LED fixtures can be rated for ingress protection (IP), which means they are vapor tight for safe application of sprays for integrated pest management and fixture hose-down for cleaning

Review Certified Equipment

Use DesignLights Consortium QPL

- Visit <u>https://qpl.designlights.org/horticulture</u>
- Filter by PPE
 - Choose a minimum and maximum PPE Ο
 - Understand that fixtures with high PPE \bigcirc may be more expensive
 - 3.6 3.8 umol/J is the upper bound for Ο fixtures in for attractive grower ROI and may have high amounts of red diodes
- State Compliance filter for businesses operating in states with minimum PPE requirements (MA, IL, soon to be CA)

ufacturer: d: NextLig
COOCT
C90675
ufacturer: d: Gavita
u. Gavita
TLL 8
ufacturer:
LED d: Philips
DEL-W
ufacturer:
d: ThinkGr
DEL-H
ufacturer: d: ThinkGr
LN18
ufacturer:
d: ILUMIN
G-660
afacturer
d: HortiBe
14353620
L7008/
a contraction of the second
ufacturer:
d: HONGY

facturer: NextLight, LLC NextLight 906751 facturer: Hawthorne Gardening

TLL 800 DRW MB 277-400V 2.2D

Manufacturer: Signify North America Corporation -	Product Name: F
Horti LED	Linear
Brand: Philips	Product ID: H-00

DFI-W

facturer: TrolMaster Agro Instruments Co., Ltd ThinkGrow

DEL-H

facturer: TrolMaster Agro Instruments Co., Ltd ThinkGrow

Product Name: Ho Product ID: H-JQ55

Product Name: Ho

Product ID: H-A7P

LN18

acturer: ILUMINAR Lighting ILUMINAR Lighting

Product Name: IL | Product ID: H-0002

G-660B8 FSG 26 D1

acturer: HortiBest HortiBest

Product Name: Ho Product ID: H-0005

7008A6-340W-120

facturer: Hongyi Lighting L,T,D. HONGYI

Product ID: H-0005

.7008A6-720W-120

acturer: Hongyi Lighting L,T,D.

Product ID: H-0005

Image credit: DesignLights Consortium Horticultural QPL, accessed February 2022

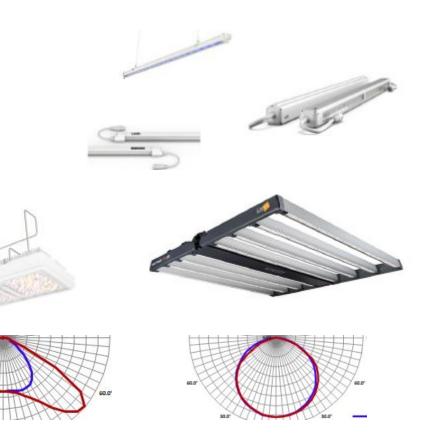
Steer Crops

Light Affects Yield & Quality

- LEDs provide adequate light levels and specialized light recipes for plants
- Plants grown with LEDs can produce similar or better yields than those grown with other lighting technology
 - 1% increase in light intensity correlates to 1% increase in yield
- Lighting systems operated with customized and/or tunable spectra can improve crop quality
- Spectral treatments can impact taste, structure and pigments of fruits and can help with pathogen management
- Spectral treatments also have impacts on harvested yield

Image credit: Signify

OPTIMIZING LIGHTING SYSTEM DESIGN


SECTION 04

LED Lighting Features

Not all LEDs are created equal

- Application
- Photometrics
- Ballasts and Drivers
- Dimming and Controls
- Maintenance
- Warranty
- 3rd Party Certification

Lighting Trends

From the growers

- Majority growing indoors
- Managing energy costs one of the main concerns
- Boost in multi-tier operations
- More require dimming capabilities
- Higher light intensity asks
- Concern about light spectrum

Provide plants with the exact intensity and quantity of light while minimizing energy consumption and lowering bills

Image credit: DIALux Evo, Hawthorne

3D Modeling

Designs can include and confirm:

- Site plans
- Fixtures
- Hardware
- Color rendering
- Retrofit options

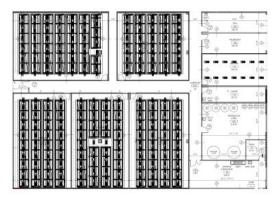
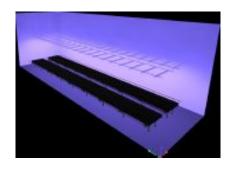
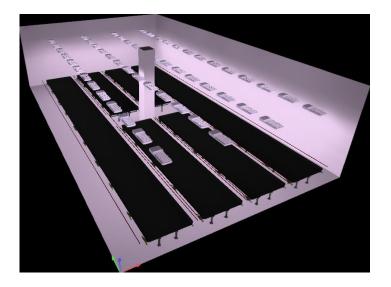
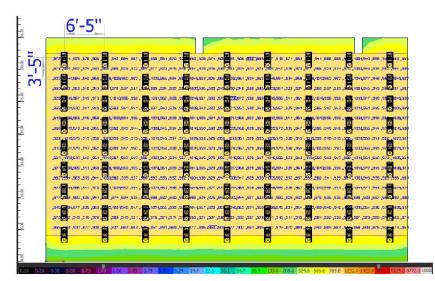




Image credit: DIALux Evo, Hawthorne



2D Mapping

Layouts can include and confirm:

- Average PPFD and uniformity
- Heat maps and isolines
- Dimensions, spacing, and coordinates
- Total Wattage, current, and heat load
- Fixture Specs

Number of Fixtures	98	pcs
Fixture Bottom	9.25	ft
Calculation Surface 1 (Max crop + bench)	6.67	ft (from floor)
Ave PPFD	1000	µmol/m2-s
Uniformity	90	%
Calculation Surface 2 (Min crop + bench)	3.67	ft (from floor)
Ave PPFD	931	µmol/m2-s
Uniformity	68	%
Bench Height	20	in
Wattage / Room	76.44	kW
Current / Room @277V	276	Amps
Heat Load / Room	260.81	kBTU/hr

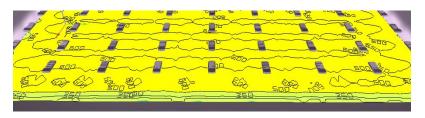
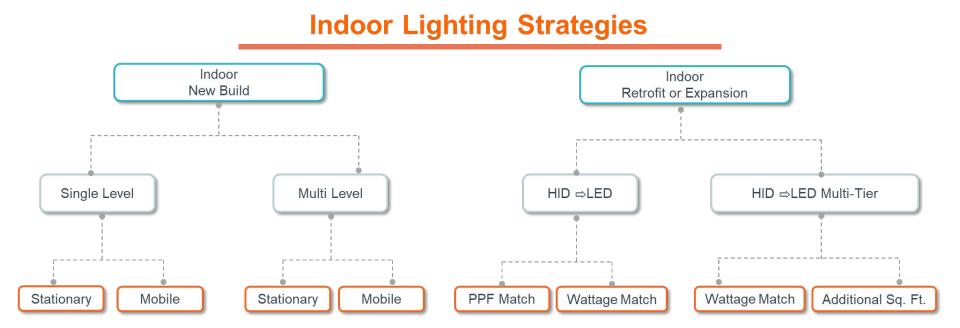


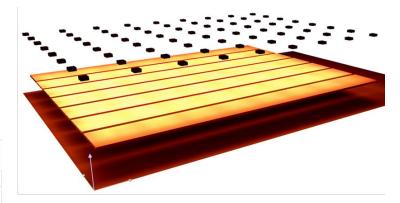
Image credit: DIALux Evo, Hawthorne

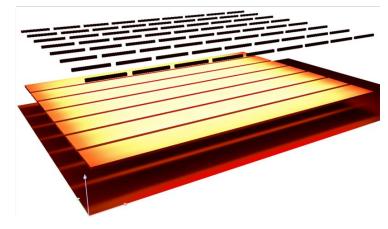
MAXIMIZING FINANCIAL INCENTIVES



Financial Considerations

- Crop type and market needs
- Business model
- Space utilization
- Capex/ Opex
- Payback period and ROI

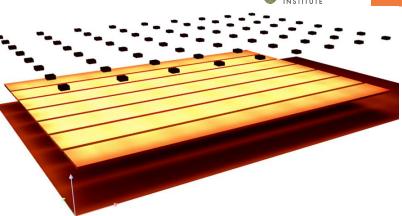


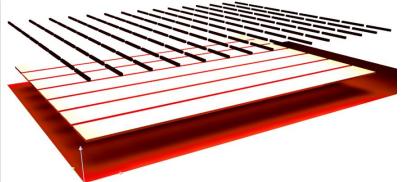


Metric	HPS	LED	Δ
Fixture Quantity	72 DE HPS 1000W	72 VYPR 2p	Match
Room PPF	126,000 µmol/s	122,400 µmol/s	-2.86%
PPFD Average	888 µmol/m²/s	889 µmol/m²/s	+ 0.11%
Total Electrical Input	75,600 watts	45,360 watts	- 40%
Lighting Power Density	67.5 w/ft ²	40.5 w/ft ²	- 40%
Fixture Mounting Height	3' from Canopy	3' 6" from Canopy	NA
Canopy	1,120 ft ²	1,120 ft ²	Match

PPFD units: µmol/m²/s)

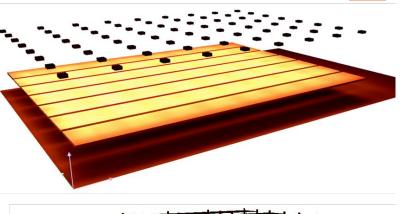
1400.00 1200.00 1050.00 875.00 700.00 525.00 350.00 175.00 0.00

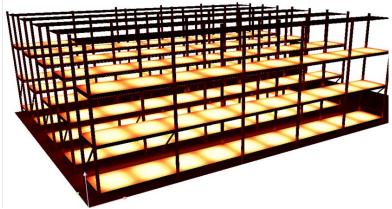




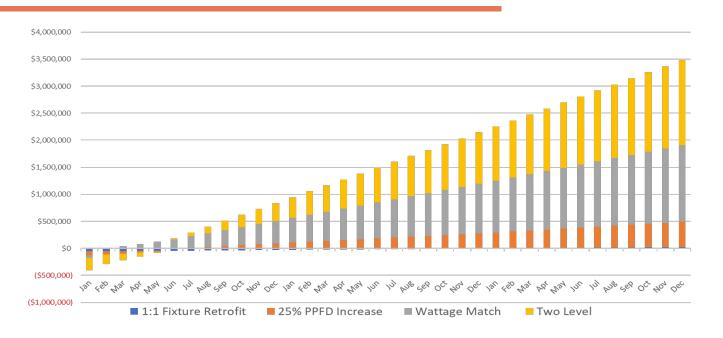
Metric	HPS	LED	Δ
Fixture Quantity	72 DE HPS 1000W	120 VYPR 2p	NA
Room PPF	126,000 µmol/s	204,000 µmol/s	+ 61.9%
PPFD Average	888 µmol/m²/s	1,453 µmol/m²/s	+63.62%
Total Electrical Input	75,600 watts	75,600 watts	Match
Lighting Power Density	67.5 w/ft ²	67.5 w/ft ²	Match
Fixture Mounting Height	3' from Canopy	3' from Canopy	NA
Canopy ft ²	1,120 ft ²	1,120 ft ²	Match

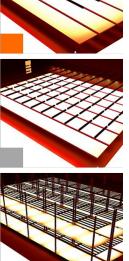
WATTAGE MATCH


Metric	HPS	LED	Δ
Fixture Quantity	72 DE HPS 1000W	150 SPYDR Series	NA
Room PPF	126,000 µmol/s	202,500 µmol/s	60.71%
PPFD Average	888 µmol/m²/s	844 µmol/m²/s	- 4.95
Total Electrical Input	75,600 watts	75,000 watts	- 0.79%
Lighting Power Density	67.5 w/ft ²	31.25 w/ft2	- 53.7%
Fixture Mounting Height	3' from Canopy	12" from Canopy	NA
Canopy	1,120 ft ²	2,400 ft ²	114.28%


PPFD units: µmol/m²/s)

> 1400.00 1200.00 1050.00 875.00 700.00 525.00 350.00


175.00


0.00

THE FINANCIALS Simple Payback Year 3

RESOURCE 43 INNOVATION

LED BEST PRACTICES FOR VERTICAL FARMS

SECTION 05

Vertical Growing Considerations

Before you start

- Business model and financial plan
- Crop type and market needs
- Multi-level & size
- Equipment and micro-climates
- Mounting & wiring installation
- Zones and control
- Intensity and spectrum
- GMP, compliance, and incentives

Image credit: Fluence

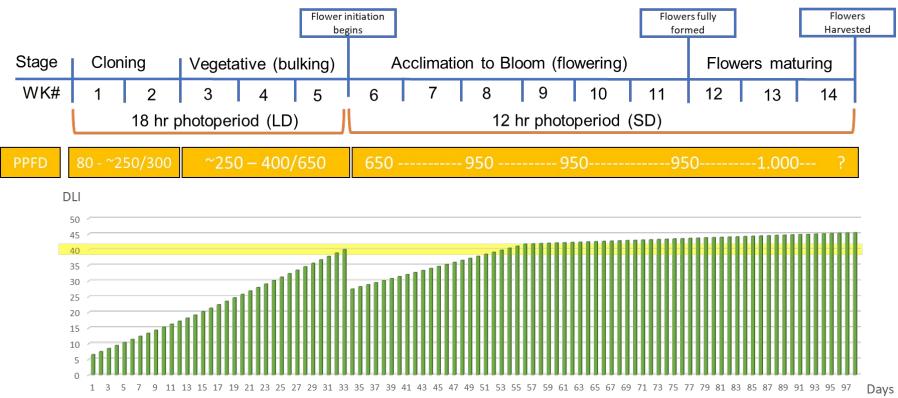
LEDs for Vertical Growing

Application Specific

- Crop Type
- Above vs. Intracanopy
- Propagation/ Seedlings
- Vegetative
- Flowering/ Fruiting

Image credit: Fluence

Planning for Stages of Growth


What is being grown, what does it need?

	Low Performance Medium Performance	Average DLI (Moles/Day)																			
Species	Optimal Performance		4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Lily																					
Anthurium																					
Rose																					
Lettuce																					
Carnation																					
Chrysanthemum (cut flower)																				
Pepper																					
Cucumbers																					
Tomatoes																					
Cannabis/ Hemp																					

 These values are sourced from James E. Faust, Ball Red Book, as well as independent research.

Crop Steering : Photo Acclimation

Choose Spectra for Crop Applications

SQD Optimized for Growth Stages

- Crop Type
- Facility Type
- Broad/ Narrow
- Custom Spectrum
- Intensity
- Efficacy

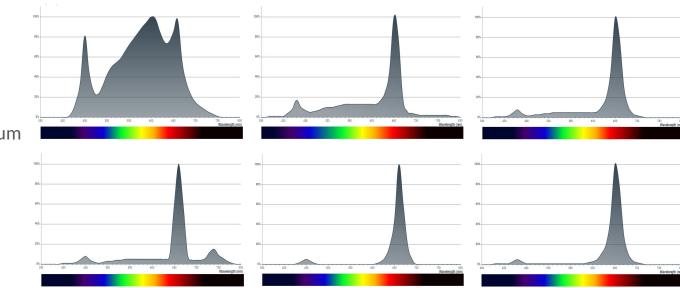
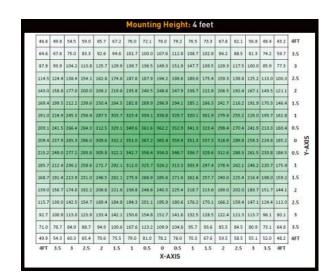
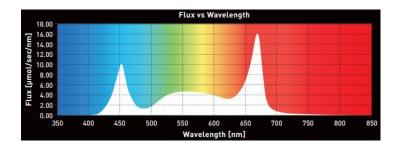


Image credit: Fluence

CONSIDERATIONS FOR LIGHTING CONTROLS

SECTION 07

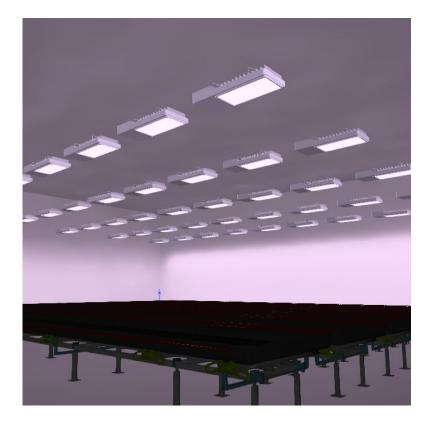

Importance of Lighting Control


Lighting

- #1 growth input for plants
- Plant development, genetics, fertigation, and environment conditions
- Amount and quality

Control Systems

- Adjusting intensity and tuning spectra
- Managing lighting schedules
- Monitoring canopy conditions
- Automatic response



Planning Lighting Controls

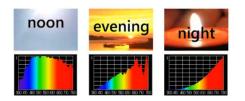
Key Considerations

- Facility type and location
- New construction or existing
- Lighting
- Crop being grown
- Zones of control
- Wireless vs wired
- Key points to monitor
- Systems to control vs systems to monitor
- Balancing efficiency
- Cost vs. performance
- Response rates
- Maximizing production
- Perpetual harvest

Image credit: DIALux Evo, Hawthorne

Lighting Controls Strategies

Scheduling


• Adjust photoperiod


Dimming

- Modulate lighting intensity
 - Daily
 - By stage of plant growth

Spectral Tuning

• Modulate photon output from wavelength ranges

Table 2: Lighting Schedules and DLI Targets for Cannabis Cultivation

Cannabis Growth Stage	for Cannabis Sole-Source Daily Lighting Hours		Example Supplemental Daily Lighting Hours ^a (Greenhouse)
Flower/Bloom	25 - 50	12	North: 6 - 8 hours South: 5 - 6 hours
Vegetative	20 - 40	18 - 244	North: 4 - 6 hours South: 1 - 3 hours
Clone/Seedling	15 - 20	14 - 24	North: 0 - 2 hours South: Not needed
Mother	20 - 40	18	North: 4 - 6 hours South: 1 - 3 hours

Image credit: American Floral Endowment, RII Cannabis Controls Best Practices Guide, Hawthorne

Data Collecting for Cannabis Steering

Gather data to validate performance, support lighting controls incentives, and understand energy savings
 Table 3: Lighting Controls Parameters Measured by

 Cannabis Cultivators

Lighting Data Collected ⁵	Percentage of Growers Collecting, 2020
Light intensity (PPFD)	55%
Spectral quality	33%

Table 4: Lighting Controls for Cannabis Steering by Stage of Plant Growth⁶

Lighting Controls	Vegetative	Flowering	Ranges of Controls Values			
PPFD	Lower	Higher	300 - 1500+ μmols/m²/s			
DLI	Less	More	20 - 42 moles/m²/day			
Spectral Treatments (R:B ratio)	Higher	Lower	7 - 15%; higher blue for shorter plants			
Far Red Treatments	More	Less	Used to manage shade avoidance			

Figure credit: RII Cannabis Controls Best Practices Guide

SECTION 08

COMMISSIONING LIGHTING CONTROLS

Lighting Controls Equipment

- Quantum sensors
- Data loggers
- Dimming Controllers
- Building Management Systems

Image credit: Hawthorne

Configure Control Equipment

Sensors

- Type and setup
- Maintenance

Controllers

- Type
- Compatibility and connectivity
- Programmability
- Data logging

Targets

- Zones
- Set point values and ranges
- Automation
- Energy usage

Image credit: RII Cannabis Controls Best Practices Guide, Hawthorne

17 08:00 06/07 12:00 06/07 16:00 06/07 20:00 06/08 00:00 06/08 04:00 06/08 08:00 06/08 12:00 06/08 16:00

Control Sequence

Verify Validate Monitor

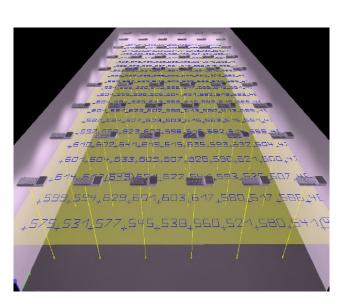


Image credit: RII Cannabis Controls Best Practices Guide, DIALux Evo, Hawthorne

Document Baselines

Capture Market Practices and Performance

Benchmark your production environments to create baselines for resource efficiency:

- Energy
- Water
- Emissions

Understand how your facility performs compared to your key performance targets

A selection of crops grown indoors Fruits Vine Crops Greens Cannabis tomatoes, peppers, leafy greens, cucumbers, eggplants lettuce, spinach Flowers Commodities Hops perennials, annuals, corn, wheat ornamentals Other Insects Microgreens/ poultry, forestry herbs seedlings, algae **Other Vegetables** Vegetable 000 **Strawberries** tubers. Transplants

Get Verified 📀

Facility Performance Snapshots

Key Performance Indicators for CEA

Quantify performance of CEA facilities using specialized key performance indicators for:

- Efficiency
- Productivity

Understand how lighting system operation affects facility lighting and energy KPIs

- Efficiency : W / day / sq ft
- Productivity: W / day / lb

Observe changes in canopy productivity

Figure credit: RII, PowerScore

Calculated PowerScore

#47974088-21, Indoor, Grantsville, MD, Climate Zone 5A, July 2020 - June 2021

Whole Facility Year-Over-Year Energy 45th percentile Non-Electric Efficiency ® 188 kBtu / sq ft 1 30% better 71st percentile Emissions Efficiency @ 13.4 kg CO₂e / sq ft 13.4 kg CO₂e / sq ft 24.4% better 100th percentile Select a second PowerScore for comparison snapshot or Lighting Efficiency @ 2.820 kWh / day 1 87% better 81st percentile #47974085-21. Motown Gro -HVAC Efficiency 392 kBtu / sq ft ≡ 0% change 3rd percentile Overall: Middle-ofthe-Pack Your operation's overall performance within the data set of Water 94th percentile indoor facilities in PowerScore's Ranked Data Set: Water Efficiency @ 0.523 gal / sq ft 8.2% worse 97th percentile 45th Waste 68th percentile percentile Come back to check your PowerScore regularly to see how Waste Efficiency @ 0.24 lbs / sq ft ■ 0% change your rank changes as more 80th percentile facilities benchmark their performance!

Get in Touch with Our Sponsor

Program Offerings

- On bill financing
- GoGreen business energy financing
- Vendor partner rebates and incentives
- New programs in development!
- <u>Summer Reliability Program (SRP)</u>
 - performance-based compensation to reduce energy usage during times of high grid stress
 - o <u>sce.com/srp</u>

Connect:

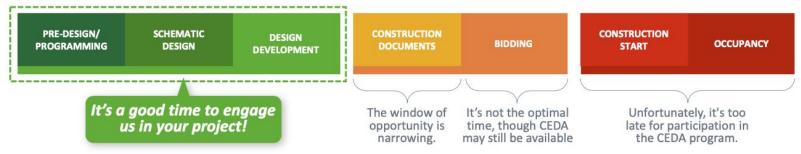
SummerReliabilityProgram@sce.com

Summer Reliability Program

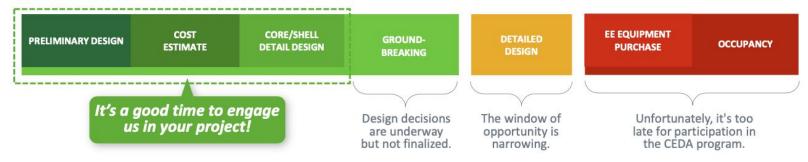
Offers Trade Professionals performance-based compensation to reduce energy usage during times of high grid stress with the goal to avoid rotating outages while minimizing costs to ratepayers.

- Budget: \$60M
- Program Materials and to enroll as a Trade Professional
- streamlined application and review process that will allow projects to be approved and installed within a reduced timeframe
- Pre- and post- site audits are also not required
- Trade Professionals will be compensated over three 4-month periods using a performance-based Population Normalized Metered Energy Consumption methodology
- Performance is tied to grid benefits based on the hourly avoided cost value of projects
- LED lighting fixtures are required to be DLC listed. Energy savings will be compared against the existing baseline.

Statewide CEDA Program for Producers


California Energy Design Assistance (CEDA) New Construction Program Visit CaliforniaEDA.com

- Statewide Program serving PG&E, SCE, SoCal Gas, SDGE
 - Program participants receive the following complimentary services:
 - Comprehensive Whole Building Energy Analysis
 - Assistance identifying and evaluating energy-saving measures
 - Analysis of energy costs and paybacks
 - Incentives for New Construction and Major Renovations projects
 - CEDA Pathways: Mixed Fuels or All-Electric
 - Mixed Fuels for customers who want the option of both gas and electricity
 - All-Electric program option offers higher incentives if customers do not install gas service


66

Statewide CEDA Program for Producers

TRADITIONAL DESIGN/BID/BUILD PROCESS

FAST-TRACK OR DESIGN/BUILD PROCESS

CONTACT US

Visit us at www.ResourceInnovation.org

P.O. Box 5981 Portland, Oregon 97228 derek@resourceinnovation.org gretchen@resourceinnovation.org carmen@resourceinnovation.org

f У 🖸 in 🕨