

Efficient HVAC & Dehumidification Strategies for Craft Cultivation Operations

In partnership with

July 11, 2022

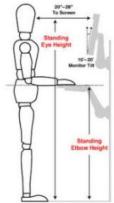
WELCOME

Jim Megerson: Efficient HVAC + Dehumidification Strategies for Craft Cultivation Operations 7/11/2023

On-Line Safety

Please take care of yourself remember to stretch

and hydrate


Call 911

Earthquake Drop / Cover / **Hold On**

Active Shooter Get Out / Hide Out / **Take Out**

Evacuation Plan and path of egress

Follow Good Ergonomics, please be careful with screen height, keyboard position and posture!

Safety Message

Remember Your Go Bag. Create One, Keep One!

- Battery-operated or crank radio
- Cash and credit cards
- Emergency blanket
- Extra batteries for radios
- Extra keys to your house and car
- Extra change of clothes
- First-aid supplies
- Flashlight
- High-powered snacks

- Important documents in sealed plastic bags
- Knife
- Lighter and matches
- Medications
- Multi-tool
- Personal toiletry items
- Spare chargers for electronics
- Water purification tablets
- Waterproof bags

Recording Authorization and Release

By attending this event you voluntarily and without compensation consent that Pacific Gas and Electric Company (PG&E), shall have the right to use and assign, photographic pictures, videotapes, recorded testimonials and other media materials or sound recordings, any and all of my name or likeness taken and acquired from our Energy Centers to use to promote or publicize PG&E's business. Acceptable uses of such Information include but are not limited to: (1) advertising through video/audio commercial broadcasts, written advertisements or other promotional materials about PG&E, whether published by PG&E or another enterprise; (2) news stories or press releases supplied by PG&E to news gathering or disseminating organizations, such as wire services, newspapers, or magazines; and (3) publication in internal or external, PG&E publications.

By participating you agree to release and waive all claims against PG&E from any liability arising from using my Information. You also grant PG&E a perpetual, royalty-free, transferrable license to use my Information to promote its business and expressly disclaim all rights to any value and benefit PG&E may resulting from such use.

Disclaimer

The information in this document is believed to accurately describe the technologies addressed herein and are meant to clarify and illustrate typical situations, which must be appropriately adapted to individual circumstances. These materials were prepared to be used in conjunction with a free educational program and are not intended to provide legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas & Electric (PG&E) nor any of its employees and agents: (1) makes any written or oral warranty, expressed or implied, including but not limited to the merchantability or fitness for a particular purpose; (2) assumes any legal liability or responsibility for the accuracy or completeness of any information, apparatus, product, process, method, or policy contained herein; or (3) represents that its use would not infringe any privately owned rights, including but not limited to patents, trademarks or copyrights. Furthermore, the information, statements, representations, graphs and data presented in this report are provided by PG&E as a service to our customers. PG&E does not endorse products or manufacturers. Mention of any particular product or manufacturer in this course material should not be construed as an implied endorsement.

QR Code to access 60 plus HVAC classes

https://pge.docebosaas.com/learn/external-ecommerce;view=none?ctldoc-catalog-0=se-hvac

Please scan with smart phone camera to access 60 plus HVAC classes via our website.

LET US KNOW IN THE CHAT!

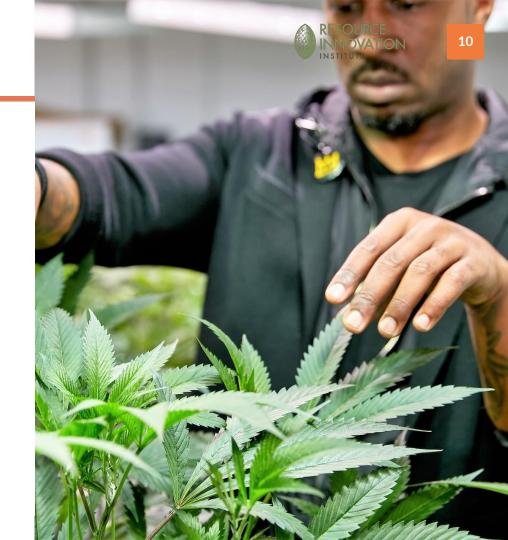
What are you hoping to get from

this presentation?

Agenda

Introduction & Purpose

HVAC 101


System Types for Craft Scale

Commissioning & Maintenance

Common Mistakes

Tips & Tools

Q&A

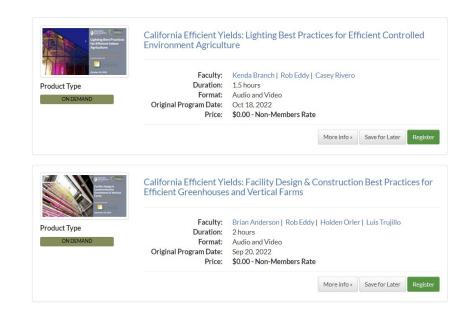
Today's Experts

Jim Megerson

Dan Dettmers

Josh Gerovac

Access Your California Virtual Classroom



Continue Learning Online

Free guidance on efficient cultivation

All live workshops are available for on-demand viewing!

- Recordings of live workshops
- Tip clips
- Downloadable resources
- PG&E and state program tools

Create an account at resourceinnovation.org/California

POLL ALERT!

What is the typical size room do you work with?

- $< 500 \text{ ft}^2$
- 500 750 ft²
- 750 1,000 ft²
- > 1,000 ft²
- N/A

CA License Sizes

- Specialty cottage
 - Specialty cottage outdoor up to 25 mature plants or up to 2,500 square feet of canopy
 - Specialty cottage indoor up to 500 square feet of canopy
 - Specialty cottage mixed-light tier 1 and 2 up to 2,500 square feet of canopy
- Specialty
 - Specialty outdoor up to 50 mature plants or up to 5,000 square feet of canopy
 - Specialty indoor 501 to 5,000 square feet of canopy
 - Specialty mixed-light tier 1 and 2 2,501 to 5,000 square feet of canopy

- Small
 - Small outdoor 5,001 to 10,000 square feet of canopy
 - Small indoor 5,001 to 10,000 square feet of canopy
 - Small mixed-light tier 1 and 2 5,001 to 10,000 square feet of canopy
- Medium
 - Medium outdoor 10,001 square feet to 1 acre of canopy
 - Medium indoor 10,001 to 22,000 square feet of canopy
 - o Medium mixed-light tier 1 and 2 10,001 to 22,000 square feet of canopy

Start with the Plant

Business Plan Dictates Everything

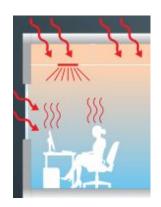
- Revenue per month
- Lbs per month
- Grams per sqft
- Size of canopy'
- Grow schedule
- Number of benches/ racks
- Size of room
- Number of Flower rooms
- Number of Veg rooms

Start with the Plant

What affects Real Estate

- Canopy size
- Size and number of the rooms
- Watering rates
- Number of lights
- HVACD
- Electrical service
- Equipment location
- Structural concerns

Cooling Load Calculations


Typical building with occupants

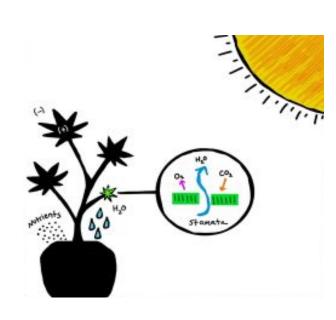
- Envelope heat gain and loss
- People
- Lighting, computers, printers etc.
- Ventilation load

Indoor agriculture

- Envelope loads are much lower (R20 walls/insulated panels)
- Lighting much higher than normal (30 50 watts/sqft)
- Plants, water
- Fewer people per sqft
- Ventilation kept to a minimum
 - Pressurization
 - CO₂ Augmentation

Energy Balance Equation

Moisture


Transpiration

- Release of Moisture to the space
- Exhalation of water vapor from the plant
- Delivered through the Stomata
- Evapotranspiration

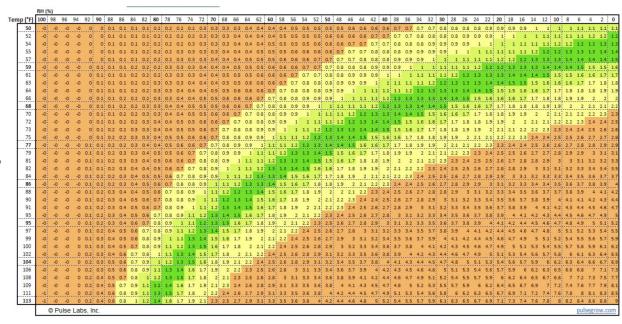
Why is this important?

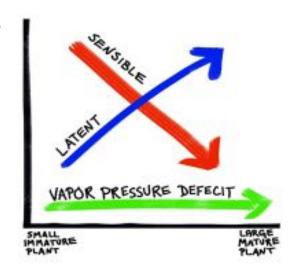
- How the plant receives nutrients
- Water moves through the plant
- Delivering nutrients from the soil

Temperature and Humidity drives Nutrient Delivery

Vapor Pressure Deficit (VPD)

- Saturation pressure at the plant surface vs vapor pressure of the space
- Controls the amount of transpiration
- Based on leaf surface temp, space temp & RH
- Mother & Veg .9 1.1 kPa
- Flower 1.1 1.4 kPa




Figure credit: Pulse Labs

Load Conundrum

<u>Sensible Load</u>: The energy stored in the air in your cultivation spaces as **heat**; "dry load"

Latent Load: The energy stored in the air in your cultivation spaces as humidity; "wet load"

- Load is highly variable
- Transpiration cools the room (approx 50% of lighting load)
- When plants are small latent is low, sensible is high
- As plants grow: more water, more transpiration, higher latent loads
- Sensible is less due to evaporative cooling

POLL ALERT!

What is the typical size room do you work with?

Discuss Results

POLL ALERT!

What kind of HVAC systems do you work with?

- Packaged AC w/ dehumidifier
- Split system w/ dehumidifier
- Integrated HVAC
- Other/unknown?
- N/A

Grow Room Systems

Application – Plant Life Support HVACD

High moisture removal rates

Air Changes per Hour

Deliver air above space dewpoint

82F / 60%RH ▶ 67F

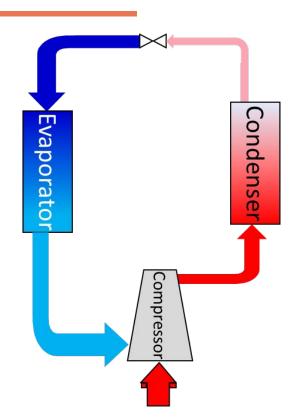
React to changing load conditions

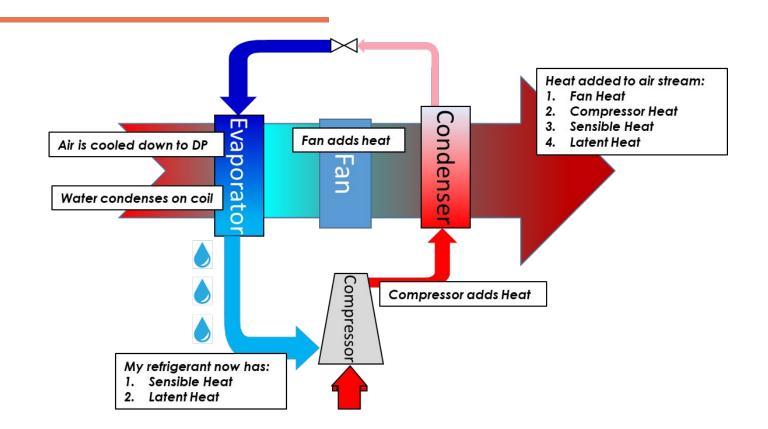
Built to run 24/7

Be energy efficient

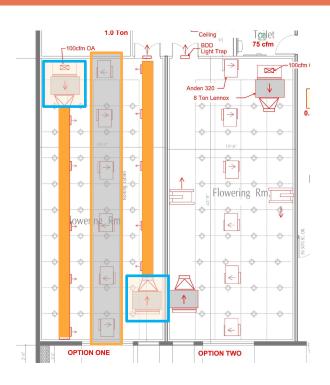
System Types for Craft Grows

- Decoupled
 - System for cooling
 - System for Dehumidification
- Integrated HVACD
 - Does both

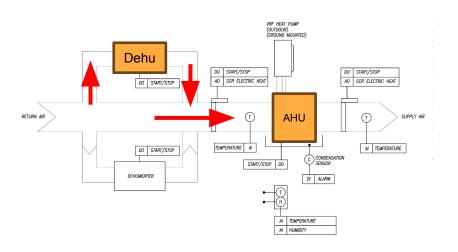



What is hot gas reheat?

Basic refrigeration cycle

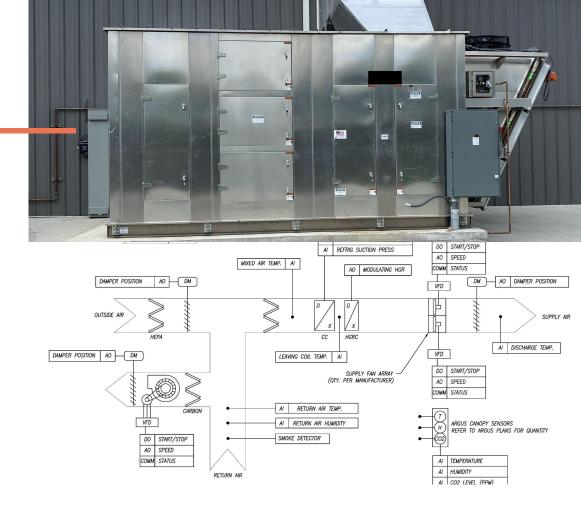


What is hot gas bypass?


Decoupled Systems

- Typical DX cooling for sensible loads
- Dehumidifiers for moisture removal
 - Delivers hot air to space (80-90F)
 - 6,000 24,000 btuh
- Cooling delivers cold SA space (55F)
 - Duct will sweat
 - Fabric duct will not sweat
- Mixing is needed
- May require additional fans
- Energy inefficient
- High Maintenance
- Not 24/7 capable
- Low first cost

Figure credit: Anvil Agrinomics


Side Stream Dehumidifiers

- Provide cooling and dehumidification
- Mix supply air very well
- Will not maintain a constant SAT
- Recommend reheat for temp control

Integrated HVACD

DX with hot gas reheat 6 & 8 row coils Fully modulating hot gas reheat Fully modulating compressors Capable of discharge air temp control Air & water cooled All flavors available Very Energy efficient Very 24/7 capable High equipment cost Lower installed cost

Controls

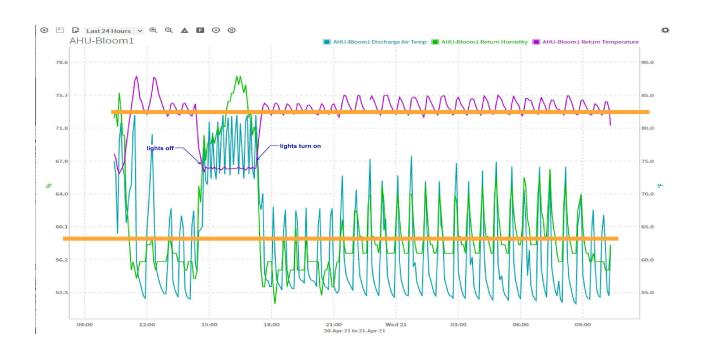


Figure credit: Anvil Agrinomics

Controls

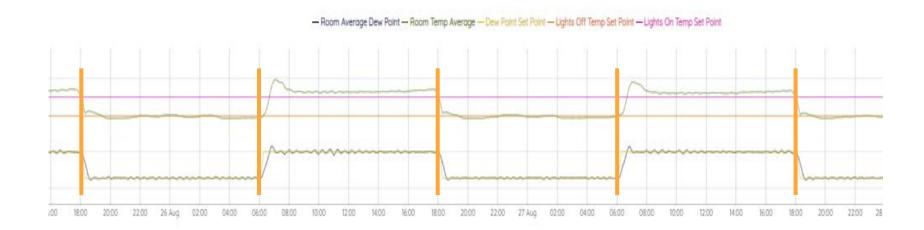
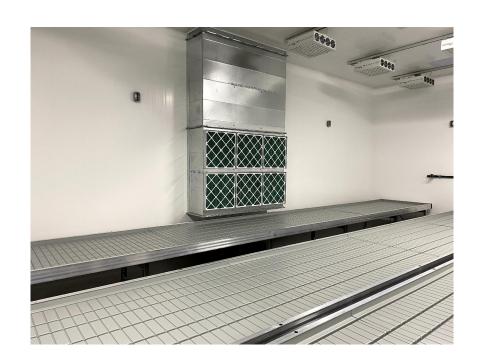


Figure credit: Anvil Agrinomics

Air Movement

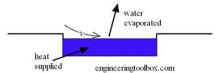
- •The plants uses the CO2 around the leaf's surface in 4 minutes
- •Air Movement helps avoid the formation of microclimates and replenishes the much needed CO2 where photosynthesis takes place
- •The leaves should flutter but not be windblown (idealy below 200 fpm)
- •Not enough airflow can lead to the proper conditions for mold and mildew to set in.
- •Methods for achieving proper airflow are wall mount, inline, and de-stratification fans


Air flow in Grow Rooms

- Supply air to the space
 - Supply Air temp above space dewpoint
 - If the space SP is 82F/ 58% correlates to approx. 68F SA temp
- Air Changes per Hour
 - 30 to 50
 - De-coupled fans in space
 - Attempting to minimize Micro-climates

Air Flow

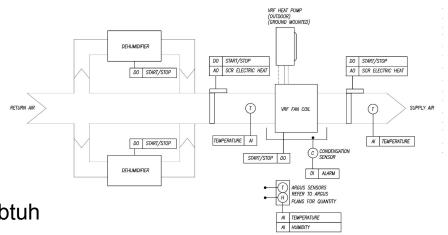
- Supply and return air high
 - Short circuiting of air
 - Supply air very close to room temp
 - Air is very velocity dependent
- Supply high, return low
 - This insures best air movement
 - Difficult to blow air through canopy
 - Air tends to bounce off
 - Best to draw air through canopy
 - Velocity @ plant 0.5-1m/s or 100-200fpm
 - Max of 2m/s or 400fpm
 - Very difficult to penetrate canopy



Another Aspect of VPD

Another Aspect to VPD

Open water evaporation is greatly governed by the velocity over the surface.


Why should air movement over a leaf not have the same effect?


```
The amount of evaporated water can be expressed as: g_S = \Theta \ A \ (x_S - x) \ / \ 3600 \qquad (1) or g_h = \Theta \ A \ (x_S - x) where g_S = \text{amount of evaporated water per second (kg/s)} g_h = \text{amount of evaporated water per hour (kg/h)} \Theta = (25 + 19 \ v) = \text{evaporation coefficient (kg/m^2h)} v = \text{velocity of air above the water surface (m/s)} A = \text{water surface area (m^2)} x_S = \text{maximum humidity ratio of saturated air at the same temperature as the water surface (kg/kg) (kg H_2O in kg Dry Air)} x = \text{humidity ratio air (kg/kg) (kg H_2O in kg Dry Air)}
```


Dry Rooms

- Room with no sensible load
 - 60-65F/ 50%RH, no lights
 - All moisture removal.
 - 4000lbs remove 88% = 3520 lbs
 - Over 10 days
 - 1.76 gal/hr = 14.67 lbs/hr = 15,476 btuh
 - Very difficult with conventional HVAC
 - Return air must be above 65F

Dry Room Air Flow

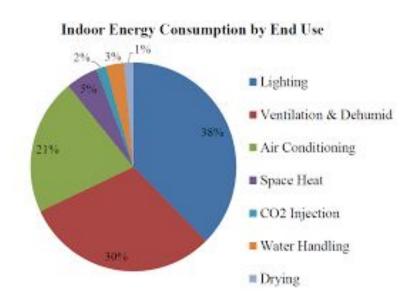
- Airflow in dry rooms
 - Usually, SA is warmer than room temp
 - 60F room may require 63F SA
 - Laminar flow is best
 - Less than 250 fpm
 - Across entire cross section of space

Dry Room Air Flow

Tellus Health Corp Butler, MO

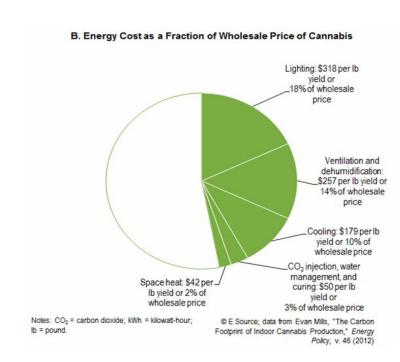
Airflow Demonstration Drying Room

Test 2.1 Inject tracer smoke in center of room, at center height of supply/return banks.


POLL ALERT!

What kind of HVAC systems do you work with?

Discuss Results



- 30% Ventilation & Dehumidification
- 21% Air Conditioning
- 5% Space Heating
- 1% Drying
- HVACD is 57% of total energy
- Lighting is 38% of total energy

 30% of the wholesale price is used for air treatment energy cost

CPC Savings				
	aseline IECC 2018		LED and Efficient	HVAC
	Baseline HVAC a	Efficient HVAC		nd LED Lighting
	Energy (kWh)	Demand (kW)	Energy (kWh)	Demand (kW)
Cooling	8,541,867.00	1,595.76	3,149,048.00	670.23
Exterior Lighting	0.00	0.00	0.00	0.00
Exterior Receptacles	0.00	0.00	0.00	0.00
Fans	623,306.60	125.32	578,986.30	114.54
Heat Recovery	0.00	0.00	0.00	0.00
Heat Rejection	0.00	0.00	0.00	0.00
Heating	695,863.40	293.84	626,409.50	697.51
Humidification	0.00	0.00	0.00	0.00
Interior Lighting	9,788,960.00	2,071.60	5,712,076.00	1,211.35
Interior Receptacles	83,950.09	12.84	106,131.80	17.71
Pumps	0.00	0.00	0.00	0.00
Refrigeration	0.00	0.00	0.00	0.00
Service Water Heating	0.00	0.00	0.00	0.00
Grand Total	19,733,947.09	4,099.37	10,172,651.60	2,711.35
			Savings kWhs	Rate/kWh
	19,733,947.09	10,172,651.60	9,561,295.49	\$ 0.10
	Incentive Estima	te>>>>>	Process	\$ 956,129.55

- HVAC 55% energy savings
- Lighting 41% energy savings
- Total of 48% energy savings

- Lighting Schedule
- Staggering room light schedules
- Saves in Elec. Demand Charges
- 15,000 CSF \$187,000 savings

Table credit: Anvil Agrinomics

- Water reclamation
 - 756 gal/ day
 - 9 rooms
 - 6,804 gal/day

	F	lower	
Parameters		Values	Units/Notes
	W	42.0	Ft
Room Dimensions	L	80.0	Ft
	Н	12.0	Ft
Room Area		3360	Sq Ft
Room Volume		40320	Cu Ft
Quantity of Plants		1680	# of Plants
Watering Rate		0.45	Gallons/ plant/ day
			Gallons/ day
Total Water		6297	Lbs/ Day
		484	Lbs/Hour
Watering Method		Drip Irrigation	
Grow Light Type		LED	10.0000 1.0000
Quantity of Lights		180	# of lights
Watts per Light		620	Watts per Light
Total Watts		111600	Total watts in room
Lighting Schedule	n Schedule On 12	Hours per day	
Lighting Schedule	Off	12	Hours per day
	Т	82	°F DB
D O EE ELL	Н	65	% RH
Room Conditions lights on	LTA	-2	°F DB
	VPD	1.2	kPa
Room Conditions lights off	tions lights off T 65 °F DB		°F DB
Toom Conditions lights on	Н	50	% RH

Table credit: Anvil Agrinomics

POLL ALERT! Do you offset your light schedule?

- Yes
- No
- N/A

Monitoring, Calibration, Commissioning

Monitoring

- You can't manage what you don't measure...and you can't measure what you don't monitor
- Collect data to solve problems and support savings claims

Calibration

- Ensure sensor accuracy so systems respond to actual environmental conditions
- Configure response times to reduce short-cycling

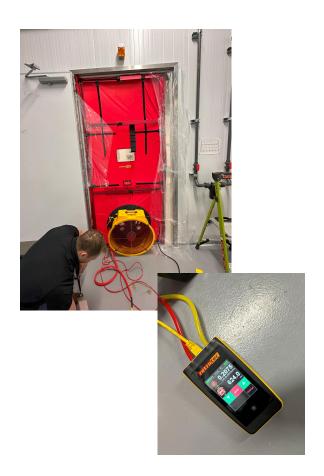
Commissioning

 Functionally test HVAC sequences of operation to ensure persistent energy savings

Figure credit: Gro iQ / InfiSense

Maintenance Planning

- Budget
- Schedule system downtime or reduced capacity
- Schedule resources from vendors
- Common parts and consumables on hand
- Access to equipment
 - Aisle size
 - Overlapping equipment
 - Vertical access
 - Replacement of larger systems
 - Safety



HVAC Maintenance

- Filter maintenance
 - Filters do help to clean the air but the main purpose in grow room applications is to keep the internal components of the dehum and A/C clean
 - At a minimum filters should be replaced after every harvest.
- Drain lines
 - Drain lines should also be cleaned or treated when filters are replaced.
- Schedule routine HVAC clean and checks as recommended by the Manufacture
- Common parts and consumables on hand
- When spraying in a room
 - Turn off dehumidifiers
 - Turn off the A/C
 - Bag all controls and sensors

Room Integrity

- Airtight room is imperative
- Energy Leakage
 - Vapor pressure travels from high to low
- Worse at night and in the winter
 - Dehumidification without compressors
- Over dehumidification
 - 624 cfm / 0.84 ACH
 - Losing 84 lbs/hr

POLL ALERT!

Do you offset your light schedule?

Discuss Results

Lessons Learned

- Business plan drives everything
- Operate and design around the plant
- Don't sacrifice quality for quantity
- Seal your rooms
- Not all hot gas reheat is the same
- Don't use internal liner in ductwork
- Make sure equipment will operate below lowest OA temp
- Schedule lighting to minimize demand charges
- Make sure there is good mixing of air
- If using Integrated systems best supply air is 2F above dewpoint

TABLE 1: Application Limitations

Ambient Air Temperature on Outdoor Coil		Air Temperature on Indoor Coil		
Min. DB	Max. DB	Min. WB	Max. WB	
50°F	115°F	57°F	72°F	

 The unit should not be operated at outdoor temperatures below 50°F without an approved low ambient operation accessory kit installed

Get in Touch with Our Sponsor

Program Offerings

- Agriculture Energy Savings Action Plan
 - No Cost Technical Assistance
 - o Rebates
 - Custom Incentives
 - Site-specific analysis
 - Financing
 - Cannabis Specific
 - CEA Specific
- Learn more & apply: <u>agenergysavings.com</u>

What is AESAP

TRC's **Agriculture Energy Savings Action Plan (AESAP)** offers incentives and financing for energy-saving projects involving the retrofit or installation of energy consuming equipment.

AESAP:

- Provides rebates and incentives on energy efficient equipment upgrades
- Offers technical assistance and incentives for more complex projects
- Provides Integrated Demand Side Management support and services
- Provides services at no cost to customer

Sectors Served

Crop Production

Controlled Environment
Agriculture (CEA)

Wineries & Breweries


Dairy & Livestock

www.AgEnergySavings.com

Connect@AgEnergySavings.com | 1-833-987-7283

- Choose design & installation professionals with experience in cannabis and CEA
- Schedule a blower door test (PG&E can help!
- Review your maintenance schedule (or make one)
 - Change filters
 - Clean
- Plan comprehensive maintenance during harvest
- Opaque tubing on your fertigation system
- Check your circulation fan airflow patterns
- Check your equipment calibrations

Visit us at www.ResourceInnovation.org

P.O. Box 5981 Portland, Oregon 97228 rob@resourceinnovation.org carmen@resourceinnovation.org

THANK YOU

